Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 20(1): 356, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461901

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) was deployed in 2005 as an alternative to chloroquine and is considered the most efficacious treatment currently available for uncomplicated falciparum malaria. While widespread artemisinin resistance has not been reported to date in Africa, recent studies have reported partial resistance in Rwanda. The purpose of this study is to provide a current systematic review and meta-analysis on ACT at Mali study sites, where falciparum malaria is highly endemic. METHODS: A systematic review of the literature maintained in the bibliographic databases accessible through the PubMed, ScienceDirect and Web of Science search engines was performed to identify research studies on ACT occurring at Mali study sites. Selected studies included trials occurring at Mali study sites with reported polymerase chain reaction (PCR)-corrected adequate clinical and parasite response rates (ACPRcs) at 28 days. Data were stratified by treatment arm (artemether-lumefantrine (AL), the first-line treatment for falciparum malaria in Mali and non-AL arms) and analysed using random-effects, meta-analysis approaches. RESULTS: A total of 11 studies met the inclusion criteria, and a risk of bias assessment carried out by two independent reviewers determined low risk of bias among all assessed criteria. The ACPRc for the first-line AL at Mali sites was 99.0% (95% CI (98.3%, 99.8%)), while the ACPRc among non-AL treatment arms was 98.9% (95% CI (98.3%, 99.5%)). The difference in ACPRcs between non-AL treatment arms and AL treatment arms was not statistically significant (p = .752), suggesting that there are potential treatment alternatives beyond the first-line of AL in Mali. CONCLUSIONS: ACT remains highly efficacious in treating uncomplicated falciparum malaria in Mali. Country-specific meta-analyses on ACT are needed on an ongoing basis for monitoring and evaluating drug efficacy patterns to guide local malaria treatment policies, particularly in the wake of observed artemisinin resistance in Southeast Asia and partial resistance in Rwanda.


Asunto(s)
Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Humanos , Malí
2.
Nat Commun ; 15(1): 7659, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227370

RESUMEN

The selection and combination of dose regimens for antimalarials involve complex considerations including pharmacokinetic and pharmacodynamic interactions. In this study, we use immediate ex vivo P. falciparum field isolates to evaluate the effect of cabamiquine and pyronaridine as standalone treatments and in combination therapy. We feed the data into a pharmacometrics model to generate an interaction map and simulate meaningful clinical dose ratios. We demonstrate that the pharmacometrics model of parasite growth and killing provides a detailed description of parasite kinetics against cabamiquine-susceptible and resistant parasites. Pyronaridine monotherapy provides suboptimal killing rates at doses as high as 720 mg. In contrast, the combination of a single dose of 330 mg cabamiquine and 360 mg pyronaridine provides over 90% parasite killing in most of the simulated patients. The described methodology that combines a rapid, 3R-compliant in vitro method and modelling to set meaningful doses for new antimalarials could contribute to clinical drug development.


Asunto(s)
Antimaláricos , Malaria Falciparum , Naftiridinas , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Naftiridinas/administración & dosificación , Naftiridinas/farmacología , Naftiridinas/farmacocinética , Quimioterapia Combinada , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/efectos de los fármacos
3.
Genes (Basel) ; 14(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136946

RESUMEN

Imidazolopiperazine (IPZ), KAF156, a close analogue of GNF179, is a promising antimalarial candidate. IPZ is effective against Plasmodium falciparum and Plasmodium vivax clinical malaria in human with transmission blocking property in animal models and effective against liver stage parasites. Despite these excellent drug efficacy properties, in vitro parasites have shown resistance to IPZ. However, the mechanism of action and resistance of IPZ remained not fully understood. Here, we used transcriptomic analysis to elucidate mode of action of IPZs. We report, in wild-type parasites GNF179 treatment down regulated lipase enzymes, two metabolic pathways: the hydrolysis of Phosphoinositol 4,5-bipohosphate (PIP2) that produce diacyglycerol (DAG) and the cytosolic calcium Ca2+ homeostasis which are known to be essential for P. falciparum survival and proliferation, as well for membrane permeability and protein trafficking. Furthermore, in wild-type parasites, GNF179 repressed expression of Acyl CoA Synthetase, export lipase 1 and esterase enzymes. Thus, in wild-type parasites only, GNF179 treatment affected enzymes leading lipid metabolism, transport, and synthesis. Lastly, our data revealed that IPZs did not perturb known IPZ resistance genes markers pfcarl, pfact, and pfugt regulations, which are all instead possibly involved in the drug resistance that disturb membrane transport targeted by IPZ.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Parásitos , Animales , Humanos , Plasmodium falciparum , Malaria Falciparum/parasitología , Perfilación de la Expresión Génica , Lipasa/metabolismo
4.
Biol Open ; 11(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972051

RESUMEN

Structural biology is an essential tool for understanding the molecular basis of diseases, which can guide the rational design of new drugs, vaccines, and the optimisation of existing medicines. However, most African countries do not conduct structural biology research due to limited resources, lack of trained persons, and an exodus of skilled scientists. The most urgent requirement is to build on the emerging centres in Africa - some well-established, others growing. This can be achieved through workshops that improve networking, grow skills, and develop mechanisms for access to light source beamlines for defining X-ray structures across the continent. These would encourage the growth of structural biology, which is central to understanding biological functions and developing new antimicrobials and other drugs. In this light, a hands-on training workshop in structural biology series 4 was organised by BioStruct-Africa and the Malaria Research and Training Center (MRTC) in Bamako, Mali, to help bridge this gap. The workshop was hosted by MRTC from the 25th to 28th of April 2022. Through a series of lectures and practicals, the workshop enlightened the participants on how structural biology can be utilised to find solutions to the prevalent diseases in Africa. The short training gave them an overview of target selection, protein production and purification, structural determination techniques, and analysis in combination with high-throughput, structure-guided, fragment-based drug design.


Asunto(s)
Biología , Desarrollo Sostenible , África , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA