Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38689066

RESUMEN

Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.

3.
J Biol Chem ; 300(4): 107159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479602

RESUMEN

In the present study, we examined the mitochondrial hydrogen peroxide (mH2O2) generating capacity of α-ketoglutarate dehydrogenase (KGDH) and compared it to components of the electron transport chain using liver mitochondria isolated from male and female C57BL6N mice. We show for the first time there are some sex dimorphisms in the production of mH2O2 by electron transport chain complexes I and III when mitochondria are fueled with different substrates. However, in our investigations into these sex effects, we made the unexpected and compelling discovery that 1) KGDH serves as a major mH2O2 supplier in male and female liver mitochondria and 2) KGDH can form mH2O2 when liver mitochondria are energized with fatty acids but only when malate is used to prime the Krebs cycle. Surprisingly, 2-keto-3-methylvaleric acid (KMV), a site-specific inhibitor for KGDH, nearly abolished mH2O2 generation in both male and female liver mitochondria oxidizing palmitoyl-carnitine. KMV inhibited mH2O2 production in liver mitochondria from male and female mice oxidizing myristoyl-, octanoyl-, or butyryl-carnitine as well. S1QEL 1.1 (S1) and S3QEL 2 (S3), compounds that inhibit reactive oxygen species generation by complexes I and III, respectively, without interfering with OxPhos and respiration, had a negligible effect on the rate of mH2O2 production when pyruvate or acyl-carnitines were used as fuels. However, inclusion of KMV in reaction mixtures containing S1 and/or S3 almost abolished mH2O2 generation. Together, our findings suggest KGDH is the main mH2O2 generator in liver mitochondria, even when fatty acids are used as fuel.


Asunto(s)
Ácidos Grasos , Peróxido de Hidrógeno , Complejo Cetoglutarato Deshidrogenasa , Mitocondrias Hepáticas , Animales , Femenino , Masculino , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción
4.
J Biol Chem ; 299(12): 105399, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898400

RESUMEN

Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.


Asunto(s)
Hepatocitos , Peróxido de Hidrógeno , Complejo Cetoglutarato Deshidrogenasa , Mitocondrias Hepáticas , Complejo Piruvato Deshidrogenasa , Peróxido de Hidrógeno/metabolismo , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo , Humanos , Hepatocitos/enzimología , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Animales , Ratones
5.
Adv Exp Med Biol ; 1158: 197-216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452142

RESUMEN

Mitochondria are dynamic organelles that perform a number of interconnected tasks that are elegantly intertwined with the regulation of cell functions. This includes the provision of ATP, reactive oxygen species (ROS), and building blocks for the biosynthesis of macromolecules while also serving as signaling platforms for the cell. Although the functions executed by mitochondria are complex, at its core these roles are, to a certain degree, fulfilled by electron transfer reactions and the establishment of a protonmotive force (PMF). Indeed, mitochondria are energy conserving organelles that extract electrons from nutrients to establish a PMF, which is then used to drive ATP and NADPH production, solute import, and many other functions including the propagation of cell signals. These same electrons extracted from nutrients are also used to produce ROS, pro-oxidants that can have potentially damaging effects at high levels, but also serve as secondary messengers at low amounts. Mitochondria are also enriched with antioxidant defenses, which are required to buffer cellular ROS. These same redox buffering networks also fulfill another important role; regulation of proteins through the reversible oxidation of cysteine switches. The modification of cysteine switches with the antioxidant glutathione, a process called protein S-glutathionylation, has been found to play an integral role in controlling various mitochondrial functions. In addition, recent findings have demonstrated that disrupting mitochondrial protein S-glutathionylation reactions can have some dire pathological consequences. Accordingly, this chapter focuses on the role of mitochondrial cysteine switches in the modulation of different physiological functions and how defects in these pathways contribute to the development of disease.


Asunto(s)
Cisteína , Metabolismo Energético , Mitocondrias , Especies Reactivas de Oxígeno , Animales , Cisteína/metabolismo , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción
6.
EMBO J ; 33(22): 2676-91, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25298396

RESUMEN

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Consumo de Oxígeno/fisiología , Multimerización de Proteína/fisiología
7.
Biochem Biophys Res Commun ; 498(1): 214-220, 2018 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-29501746

RESUMEN

Recent work has found that complex I is the sole source of reactive oxygen species (ROS) during myocardial ischemia-reperfusion (IR) injury. However, it has also been reported that heart mitochondria can also generate ROS from other sources in the respiratory chain and Krebs cycle. This study examined the impact of partial complex I deficiency due to selective loss of the Ndufs4 gene on IR injury to heart tissue. Mice heterozygous for NDUFS4 (NDUFS4+/-) did not display any significant changes in overall body or organ weight when compared to wild-type (WT) littermates. There were no changes in superoxide (O2●-)/hydrogen peroxide (H2O2) release from cardiac or liver mitochondria isolated from NDUFS4 ±â€¯mice. Using selective ROS release inhibitors, we found that complex III is a major source of ROS in WT and NDUFS4 ±â€¯cardiac mitochondria respiring under state 4 conditions. Subjecting hearts from NDUFS4 ±â€¯mice to reperfusion injury revealed that the partial loss of complex I decreases contractile recovery and increases myocardial infarct size. These results correlated with a significant increase in O2●-/H2O2 release rates in mitochondria isolated from NDUFS4 ±â€¯hearts subjected to an IR challenge. Taken together, these results demonstrate that the partial absence of complex I sensitizes the myocardium towards IR injury and that the main source of ROS following reperfusion is complex III.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Superóxidos/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Eliminación de Gen , Masculino , Ratones , Miocardio/metabolismo , Miocardio/patología , Tamaño de los Órganos
8.
Trends Biochem Sci ; 38(12): 592-602, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120033

RESUMEN

During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification.


Asunto(s)
Metabolismo Energético , Glutatión/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/biosíntesis , Antioxidantes/metabolismo , Transporte de Electrón
9.
Biol Chem ; 398(11): 1209-1227, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28675747

RESUMEN

The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo
10.
Biochim Biophys Acta Gen Subj ; 1861(8): 1960-1969, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28506882

RESUMEN

Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H2O2). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O2-/H2O2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O2-/H2O2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H2O2. In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O2-/H2O2 production by KGDHC, induced a ~86% and ~84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O2-/H2O2 formation by ~45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O2-/H2O2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H2O2.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias Hepáticas/metabolismo , Superóxidos/metabolismo , Animales , Caprilatos/farmacología , Catalasa/fisiología , Complejo III de Transporte de Electrones/fisiología , Glutatión/metabolismo , Complejo Cetoglutarato Deshidrogenasa/fisiología , Masculino , Metacrilatos/farmacología , Ratones , Ratones Endogámicos C57BL , Peroxirredoxinas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/farmacología , Tiazoles/farmacología
11.
J Environ Sci (China) ; 48: 11-23, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27745655

RESUMEN

Bisphenol A (BPA) has been shown to exert biological effects through estrogen receptor (ER)-dependent and ER-independent mechanisms. Recent studies suggest that prenatal exposure to BPA may increase the risk of childhood asthma. To investigate the underlying mechanisms in the actions of BPA, human fetal lung fibroblasts (hFLFs) were exposed to varying doses of BPA in culture for 24hr. Effects of BPA on localization and uptake of BPA, cell viability, release of immune and developmental modulators, cellular localization and expression of ERα, ERß and G-protein coupled estrogen receptor 30 (GPR30), and effects of ERs antagonists on BPA-induced changes in endothelin-1 (ET-1) release were examined. BPA at 0.01-100µmol/L caused no changes in cell viability after 24hr of exposure. hFLFs expresses all three ERs. BPA had no effects on either cellular distribution or protein expression of ERα, however, at 100µmol/L (or 23µmol/L intracellular BPA) increased ERß protein levels in the cytoplasmic fractions and GPR30 protein levels in the nuclear fractions. These paralleled with increased release of growth differentiation factor-15, decreased phosphorylation of nuclear factor kappa B p65 at serine 536, and decreased release of ET-1, interleukin-6, and interferon gamma-induced protein 10. ERs antagonists had no effects on BPA-induced decrease in ET-1 release. These data suggest that BPA at 100µmol/L altered the release of immune and developmental modulators in hFLFs, which may negatively influence fetal lung development, maturation, and susceptibility to environmental stressors, although the role of BPA in childhood asthma remains to be confirmed in in vivo studies.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Estrógenos no Esteroides/toxicidad , Fenoles/toxicidad , Línea Celular , Disruptores Endocrinos/toxicidad , Fibroblastos , Humanos , Interleucina-6/metabolismo , Receptores de Estrógenos/metabolismo
12.
J Biol Chem ; 289(21): 14812-28, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24727547

RESUMEN

Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2(-/-)) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2(-/-) hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2(+/-)) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2(+/-) mice were far less hypertensive than Grx2(-/-) mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease.


Asunto(s)
Glutarredoxinas/metabolismo , Glutatión/metabolismo , Miocardio/metabolismo , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Complejo I de Transporte de Electrón/metabolismo , Fibrosis/genética , Glutarredoxinas/genética , Hipertensión/genética , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocardio/patología , Tamaño de los Órganos/genética , Oxidación-Reducción
13.
Toxicol Appl Pharmacol ; 289(3): 371-80, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26545714

RESUMEN

The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O2(-)), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O2(-)mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O2(-) in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O2(-) production by mitochondria. Both rotenone and PQ, which increase O2(-) in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O2(-) into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O2(-) emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 µM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O2(-), specifically within the matrix of mitochondria when O2(-) is in adequate supply. Our results also show that O2(-) amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein.


Asunto(s)
Compuestos de Metilmercurio/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Superóxidos/metabolismo , Antimicina A/farmacología , Línea Celular Tumoral , Cisteína/metabolismo , Humanos , Mercurio/metabolismo , Mitocondrias/efectos de los fármacos , Paraquat/farmacología , Rotenona/farmacología , Compuestos de Sulfhidrilo/metabolismo
14.
J Biol Chem ; 288(12): 8365-8379, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23335511

RESUMEN

Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2(-/-)) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3(-/-) cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism.


Asunto(s)
Glutarredoxinas/fisiología , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Protones , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ciclo del Ácido Cítrico , Diamida/farmacología , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Homeostasis , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo , Consumo de Oxígeno , Cultivo Primario de Células , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 3
15.
Biochim Biophys Acta ; 1833(1): 80-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23069211

RESUMEN

Uncoupling protein-2 (UCP2) is used by cells to control reactive oxygen species (ROS) production by mitochondria. This ability depends on the glutathionylation state of UCP2. UCP2 is often overexpressed in drug resistant cancer cells and therein controls cell ROS levels and limits drug toxicity. With our recent observation that glutathionylation deactivates proton leak through UCP2, we decided to test if diamide, a glutathionylation catalyst, can sensitize drug resistant cells to chemotherapeutic agents. Using drug sensitive HL-60 cells and the drug resistant HL-60 subline, Mx2, we show that chemical induction of glutathionylation selectively deactivates proton leak through UCP2 in Mx2 cells. Chemical glutathionylation of UCP2 disables chemoresistance in the Mx2 cells. Exposure to 200µM diamide led to a significant increase in Mx2 cell death that was augmented when cells were exposed to either menadione or the anthracycline doxorubicin. Diamide also sensitized Mx2 cells to a number of other chemotherapeutics. Proton leak through UCP2 contributed significantly to the energetics of the Mx2 cells. Knockdown of UCP2 led to a significant decrease in both resting and state 4 (i.e., proton leak-dependent) respiration (~43% and 62%, respectively) in Mx2 cells. Similarly diamide inhibited proton leak-dependent respiration by ~64%. In contrast, diamide had very little effect on proton leak in HL-60 cells. Collectively, our observations indicate that manipulation of UCP2 glutathionylation status can serve as a therapeutic strategy for cancer treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Diamida/farmacología , Resistencia a Antineoplásicos , Glutatión/metabolismo , Canales Iónicos/metabolismo , Leucemia/tratamiento farmacológico , Proteínas Mitocondriales/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Diamida/administración & dosificación , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Glutatión/farmacología , Células HL-60 , Humanos , Canales Iónicos/fisiología , Leucemia/metabolismo , Leucemia/patología , Proteínas Mitocondriales/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Bombas de Protones/efectos de los fármacos , Bombas de Protones/metabolismo , Células Tumorales Cultivadas , Proteína Desacopladora 2
16.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119639, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37996061

RESUMEN

Redox realignment is integral to the initiation, progression, and metastasis of cancer. This requires considerable metabolic rewiring to induce aberrant shifts in redox homeostasis that favor high hydrogen peroxide (H2O2) generation for the induction of a hyper-proliferative state. The ability of tumor cells to thrive under the oxidative burden imposed by this high H2O2 is achieved by increasing antioxidant defenses. This shift in the redox stress signaling threshold (RST) also dampens ferroptosis, an iron (Fe)-dependent form of cell death activated by oxidative distress and lipid peroxidation reactions. Mitochondria are central to the malignant transformation of normal cells to cancerous ones since these organelles supply building blocks for anabolism, govern ferroptosis, and serve as the major source of cell H2O2. This review summarizes advances in understanding the rewiring of redox reactions in mitochondria to promote carcinogenesis, focusing on how cancer cells hijack the electron transport chain (ETC) to promote proliferation and evasion of ferroptosis. I then apply emerging concepts in redox homeodynamics to discuss how the rewiring of the Krebs cycle and ETC promotes shifts in the RST to favor high rates of H2O2 generation for cell signaling. This discussion then focuses on proline dehydrogenase (PRODH) and dihydroorotate dehydrogenase (DHODH), two enzymes over expressed in cancers, and how their link to one another through the coenzyme Q10 (CoQ) pool generates a redox connection that forms a H2O2 signaling platform and pyrimidine synthesome that favors a hyper-proliferative state and disables ferroptosis.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Dihidroorotato Deshidrogenasa , Prolina/metabolismo , Peróxido de Hidrógeno , Oxidación-Reducción , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
17.
Redox Biol ; 72: 103155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615490

RESUMEN

The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling. KDHc enzymes serve as a source and sink for mitochondrial hydrogen peroxide (mtH2O2), a vital second messenger used to trigger oxidative eustress pathways. Notably, deactivation of KDHc enzymes through reversible oxidation by mtH2O2 and other electrophiles modulates the availability of several Krebs cycle intermediates and related metabolites which serve as powerful intracellular and intercellular messengers. The KDHc enzymes also play important roles in the modulation of mitochondrial metabolism and epigenetic programming in the nucleus through the provision of various acyl-CoAs, which are used to acylate proteinaceous lysine residues. Intriguingly, nucleosomal control by acylation is also achieved through PDHc and KGDHc localization to the nuclear lumen. In this review, I discuss emerging concepts in the signaling roles fulfilled by the KDHc complexes. I highlight their vital function in serving as mitochondrial redox sensors and how this function can be used by cells to regulate the availability of critical metabolites required in cell signaling. Coupled with this, I describe in detail how defects in KDHc function can cause disease states through the disruption of cell redox homeodynamics and the deregulation of metabolic signaling. Finally, I propose that the intracellular and intercellular signaling functions of the KDHc enzymes are controlled through the reversible redox modification of the vicinal lipoic acid thiols in the E2 subunit of the complexes.


Asunto(s)
Mitocondrias , Oxidación-Reducción , Transducción de Señal , Humanos , Animales , Mitocondrias/metabolismo , Ciclo del Ácido Cítrico , Fosforilación Oxidativa , Peróxido de Hidrógeno/metabolismo , Cetona Oxidorreductasas/metabolismo
18.
J Biol Chem ; 287(47): 39673-85, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23035124

RESUMEN

The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H(2)O(2), 10 µM) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS.


Asunto(s)
Glucosa/metabolismo , Glutatión/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Línea Celular Tumoral , Glucosa/genética , Glutatión/genética , Peróxido de Hidrógeno/metabolismo , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Canales Iónicos/genética , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteína Desacopladora 2
19.
Am J Physiol Endocrinol Metab ; 305(3): E405-15, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23757405

RESUMEN

Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glutatión/metabolismo , Canales Iónicos/fisiología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Desacopladores , Adenosina Difosfato/fisiología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Adiposidad/efectos de los fármacos , Animales , Western Blotting , Peso Corporal/fisiología , Calorimetría Indirecta , Ingestión de Alimentos , Glucosa/metabolismo , Canales Iónicos/genética , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/genética , Carbonilación Proteica/fisiología , Ratas , Proteína Desacopladora 1
20.
FASEB J ; 26(1): 363-75, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21940996

RESUMEN

Reduced glutathione (GSH) is the major determinant of redox balance in mitochondria and as such is fundamental in the control of cellular bioenergetics. GSH is also the most important nonprotein antioxidant molecule in cells. Surprisingly, the effect of redox environment has never been examined in skeletal muscle and brown adipose tissue (BAT), two tissues that have exceptional dynamic range and that are relevant to the development of obesity and related diseases. Here, we show that the redox environment plays crucial, yet divergent, roles in modulating mitochondrial bioenergetics in skeletal muscle and BAT. Skeletal muscle mitochondria were found to naturally have a highly reduced environment (GSH/GSSG≈46), and this was associated with fairly high (∼40%) rates of state 4 (nonphosphorylating) respiration and decreased reactive oxygen species (ROS) emission. The deglutathionylation of uncoupling protein 3 (UCP3) following an increase in the reductive potential of mitochondria results in a further increase in nonphosphorylating respiration (∼20% in situ). BAT mitochondria were found to have a much more oxidized status (GSH/GSSG≈13) and had basal reactive oxygen species emission that was higher (∼250% increase in ROS generation) than that in skeletal muscle mitochondria. When redox status was subsequently increased (i.e., more reduced), UCP1-mediated uncoupling was more sensitive to GDP inhibition. Surprisingly, BAT was found to be devoid of glutaredoxin-2 (Grx2) expression, while there was abundant expression in skeletal muscle. Taken together, these findings reveal the importance of redox environment in controlling bioenergetic functions in both tissues, and the highly unique characteristics of BAT in this regard.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Metabolismo Energético/fisiología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animales , Frío , Ditiotreitol/farmacología , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Canales Iónicos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/fisiología , Protones , Termogénesis/fisiología , Proteína Desacopladora 2 , Proteína Desacopladora 3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA