Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467075

RESUMEN

Recent clinical and epidemiological studies support the contention that diabetes mellitus (DM) is a strong risk factor for the development of Alzheimer's disease (AD). The use of insulin cell toxin, streptozotocin (STZ), when injected into the lateral ventricles, develops an insulin resistant brain state (IRBS) and represents a non-transgenic, or sporadic AD model (SAD), with several AD-like neuropathological features. The present study explored the effects of an anti-diabetic drug, liraglutide (LIR), in reversing major pathological hallmarks in the prodromal disease stage of both the 5xFAD transgenic and SAD mouse models of AD. Three-month-old 5xFAD and age-matched wild type mice were given a single intracerebroventricular (i.c.v) injection of STZ or vehicle (saline) and were subsequently treated with LIR, intraperitoneally (IP), once a day for 30 days. The extent of neurodegeneration, Aß plaque load, and key proteins associated with the insulin signaling pathways were measured using Western blot and neuroinflammation (via immunohistological assays) in the cortical and hippocampal regions of the brain were assessed following a series of behavioral tests used to measure cognitive function after LIR or vehicle treatments. Our results indicated that STZ significantly increased neuroinflammation, Aß plaque deposition and disrupted insulin signaling pathway, while 25 nmol/kg LIR, when injected IP, significantly decreased neuroinflammatory responses in both SAD and 5xFAD mice before significant cognitive changes were observed, suggesting LIR can reduce early neuropathology markers prior to the emergence of overt memory deficits. Our results indicate that LIR has neuroprotective effects and has the potential to serve as an anti-inflammatory and anti-amyloid prophylactic therapy in the prodromal stages of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Liraglutida/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Liraglutida/administración & dosificación , Liraglutida/farmacología , Ratones , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Presenilinas/genética , Estreptozocina/toxicidad
2.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933008

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid (Aß) aggregation, hyperphosphorylated tau, neuroinflammation, and severe memory deficits. Reports that certain boronic compounds can reduce amyloid accumulation and neuroinflammation prompted us to compare trans-2-phenyl-vinyl-boronic-acid-MIDA-ester (TPVA) and trans-beta-styryl-boronic-acid (TBSA) as treatments of deficits in in vitro and in vivo models of AD. We hypothesized that these compounds would reduce neuropathological deficits in cell-culture and animal models of AD. Using a dot-blot assay and cultured N2a cells, we observed that TBSA inhibited Aß42 aggregation and increased cell survival more effectively than did TPVA. These TBSA-induced benefits were extended to C. elegans expressing Aß42 and to the 5xFAD mouse model of AD. Oral administration of 0.5 mg/kg dose of TBSA or an equivalent amount of methylcellulose vehicle to groups of six- and 12-month-old 5xFAD or wild-type mice over a two-month period prevented recognition- and spatial-memory deficits in the novel-object recognition and Morris-water-maze memory tasks, respectively, and reduced the number of pyknotic and degenerated cells, Aß plaques, and GFAP and Iba-1 immunoreactivity in the hippocampus and cortex of these mice. These findings indicate that TBSA exerts neuroprotective properties by decreasing amyloid plaque burden and neuroinflammation, thereby preventing neuronal death and preserving memory function in the 5xFAD mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Ácidos Borónicos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Placa Amiloide/metabolismo , Memoria Espacial/efectos de los fármacos , Compuestos de Sulfonio/farmacología
3.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333883

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by massive neuronal degeneration in the striatum. In this study, we utilized solid lipid curcumin particles (SLCPs) and solid lipid particles (SLPs) to test their efficacy in reducing deficits in YAC128 HD mice. Eleven-month-old YAC128 male and female mice were treated orally with SLCPs (100 mg/kg) or equivalent volumes of SLPs or vehicle (phosphate-buffered saline) every other day for eight weeks. Learning and memory performance was assessed using an active-avoidance task on week eight. The mice were euthanized, and their brains were processed using Golgi-Cox staining to study the morphology of medium spiny neurons (MSNs) and Western blots to quantify amounts of DARPP-32, brain-derived neurotrophic factor (BDNF), TrkB, synaptophysin, and PSD-95. We found that both SLCPs and SLPs improved learning and memory in HD mice, as measured by the active avoidance task. We also found that SLCP and SLP treatments preserved MSNs arborization and spinal density and modulated synaptic proteins. Our study shows that SLCPs, as well as the lipid particles, can have therapeutic effects in old YAC128 HD mice in terms of recovering from HD brain pathology and cognitive deficits.


Asunto(s)
Curcumina/administración & dosificación , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/psicología , Liposomas , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Enfermedad de Huntington/etiología , Aprendizaje/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Neuronas/patología , Receptor trkB/metabolismo
4.
J Cell Mol Med ; 23(8): 5211-5224, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162801

RESUMEN

Autophagy, including mitophagy, is critical for neuroprotection in traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) provides neuroprotection and induces autophagy by increasing anti-inflammatory cytokines, such as interleukin-10 (IL-10). To evaluate these effects of IL10 that are released by MSCs, we genetically engineered MSCs to overexpress IL10 and compared their effects to unaltered MSCs following transplantation near the site of induced TBIs in rats. Adult, male Sprague-Dawley rats were divided into four groups: Sham + vehicle, TBI + vehicle, TBI + MSCs-IL-10 and TBI + MSCs-GFP. Thirty-six hours post-TBI, the first two groups received vehicle (Hanks balance salt solution), whereas last two groups were transplanted with MSCs-IL-10 or MSCs-GFP. Three weeks after transplantation, biomarkers for neurodegenerative changes, autophagy, mitophagy, cell death and survival markers were measured. We observed a significant increase in the number of dead cells in the cortex and hippocampus in TBI rats, whereas transplantation of MSCs-IL-10 significantly reduced their numbers in comparison to MSCs alone. MSCs-IL-10 rats had increased autophagy, mitophagy and cell survival markers, along with decreased markers for cell death and neuroinflammation. These results suggest that transplantation of MSCs-IL-10 may be an effective strategy to protect against TBI-induced neuronal damage.


Asunto(s)
Autofagia/genética , Lesiones Traumáticas del Encéfalo/terapia , Interleucina-10/genética , Trasplante de Células Madre Mesenquimatosas , Animales , Biomarcadores de Tumor/genética , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/fisiopatología , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamación/genética , Inflamación/patología , Células Madre Mesenquimatosas/metabolismo , Mitofagia/genética , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/genética , Ratas
5.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669284

RESUMEN

Autophagy and the (PI3K-Akt/mTOR) signaling pathway play significant roles in glioblastoma multiforme (GBM) cell death and survival. Curcumin (Cur) has been reported to prevent several cancers, including GBM. However, the poor solubility and limited bioavailability of natural Cur limits its application in preventing GBM growth. Previously, we have shown the greater apoptotic and anti-carcinogenic effects of solid lipid Cur particles (SLCP) than natural Cur in cultured GBM cells. Here, we compared the autophagic responses on cultured U-87MG, GL261, F98, C6-glioma, and N2a cells after treatment with Cur or SLCP (25 µM for 24 h). Different autophagy, mitophagy, and chaperone-mediated autophagy (CMA) markers, along with the PI3K-AKkt/mTOR signaling pathway, and the number of autophagy vacuoles were investigated after treatment with Cur and or SLCP. We observed increased levels of autophagy and decreased levels of mitophagy markers, along with inhibition of the PI3K-Akt/mTOR pathway after treatments with Cur or SLCP. Cell survival markers were downregulated, and cell death markers were upregulated after these treatments. We found greater effects in the case of SCLP-treated cells in comparison to Cur. Given that fewer effects were observed on C-6 glioma and N2a cells. Our results suggest that SLCP could be a safe and effective means of therapeutically modulating autophagy in GBM cells.


Asunto(s)
Autofagia/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Lípidos/química , Nanopartículas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biomarcadores Ambientales , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Mitofagia/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
7.
BMC Neurosci ; 19(1): 7, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29471781

RESUMEN

BACKGROUND: Neuroinflammation and the presence of amyloid beta protein (Aß) and neurofibrillary tangles are key pathologies in Alzheimer's disease (AD). As a potent anti-amyloid and anti-inflammatory natural polyphenol, curcumin (Cur) could be potential therapies for AD. Unfortunately, poor solubility, instability in physiological fluids, and low bioavailability limit its clinical utility. Recently, different lipid modifications in the formulae of Cur have been developed that would enhance its therapeutic potential. For example, we have reported greater permeability and neuroprotection with solid lipid curcumin particles (SLCP) than with natural Cur in an in vitro model of AD. In the present study, we compared the Aß aggregation inhibition, anti-amyloid, anti-inflammatory responses of Cur and or SLCP in both in vitro and in vivo models of AD. One-year-old 5xFAD-and age-matched wild-type mice were given intraperitoneal injections of Cur or SLCP (50 mg/kg body weight) for 2- or 5-days. Levels of Aß aggregation, including oligomers and fibril formation, were assessed by dot blot assay, while Aß plaque load and neuronal morphology in the pre-frontal cortex (PFC) and hippocampus were assayed by immunolabeling with Aß-specific antibody and cresyl violet staining, respectively. In addition, neuroinflammation was assessed the immunoreactivity (IR) of activated astrocytes (GFAP) and microglia (Iba-1) in different brain areas. Finally, comparisons of solubility and permeability of Cur and SLCP were made in cultured N2a cells and in primary hippocampal neurons derived from E16 pups of 5xFAD mice. RESULTS: We observed that relative to Cur, SLCP was more permeable, labeled Aß plaques more effectively, and produced a larger decrease in Aß plaque loads in PFC and dentate gyrus (DG) of hippocampus. Similarly, relative to Cur, SLCP produced a larger decrease of pyknotic, or tangle-like, neurons in PFC, CA1, and CA3 areas of hippocampus after 5 days of treatment. Both Cur and or SLCP significantly reduced GFAP-IR and Iba-1-IR in PFC, in the striatum as well as CA1, CA3, DG, subicular complex of hippocampus, and the entorhinal cortex in the 5xFAD mice after 5 days of treatment. CONCLUSIONS: The use of SLCP provides more anti-amyloid, anti-inflammatory, and neuroprotective outcomes than does Cur in the 5xFAD mouse model of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Curcumina/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Ratones Transgénicos , Ovillos Neurofibrilares/efectos de los fármacos , Neuronas/efectos de los fármacos , Placa Amiloide/tratamiento farmacológico
9.
Int J Mol Sci ; 19(6)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29857538

RESUMEN

Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur) has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer's, Parkinson's, Huntington's, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.


Asunto(s)
Productos Biológicos/uso terapéutico , Curcumina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Polifenoles/uso terapéutico , Transducción de Señal/efectos de los fármacos , Factores de Edad , Envejecimiento , Amiloide/metabolismo , Amiloidosis/tratamiento farmacológico , Amiloidosis/etiología , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Productos Biológicos/farmacología , Curcumina/química , Curcumina/farmacología , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Nanotecnología , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Polifenoles/química , Polifenoles/farmacología
11.
Int J Mol Sci ; 18(4)2017 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-28368337

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative genetic disease characterized by a loss of neurons in the striatum. It is caused by a mutation in the Huntingtin gene (HTT) that codes for the protein huntingtin (HTT). The mutant Huntingtin gene (mHTT) contains extra poly-glutamine (CAG) repeats from which the translated mutant huntingtin proteins (mHTT) undergo inappropriate post-translational modifications, conferring a toxic gain of function, in addition to its non-functional property. In order to curb the production of the mHTT, we have constructed two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associate protein) plasmids, among which one nicks the DNA at untranslated region upstream to the open reading frame (uORF), and the other nicks the DNA at exon1-intron boundary. The primary goal of this study was to apply this plasmid into mesenchymal stem cells (MSCs) extracted from the bone-marrow of YAC128 mice, which carries the transgene for HD. Our results suggest that the disruption of uORF through CRISPR-Cas9 influences the translation of mHTT negatively and, to a lesser extent, disrupts the exon1-intron boundary, which affects the translation of the mHTT. These findings also revealed the pattern of the nucleotide addition or deletion at the site of the DNA-nick in this model.


Asunto(s)
Sistemas CRISPR-Cas , Proteína Huntingtina/genética , Modelos Genéticos , Proteínas Mutantes/genética , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Exones/genética , Expresión Génica , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Intrones/genética , Células Madre Mesenquimatosas/metabolismo , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico
12.
Histochem Cell Biol ; 146(5): 609-625, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27406082

RESUMEN

Deposition of amyloid beta protein (Aß) is a key component in the pathogenesis of Alzheimer's disease (AD). As an anti-amyloid natural polyphenol, curcumin (Cur) has been used as a therapy for AD. Its fluorescent activity, preferential binding to Aß, as well as structural similarities with other traditional amyloid-binding dyes, make it a promising candidate for labeling and imaging of Aß plaques in vivo. The present study was designed to test whether dietary Cur and nanocurcumin (NC) provide more sensitivity for labeling and imaging of Aß plaques in brain tissues from the 5×-familial AD (5×FAD) mice than the classical Aß-binding dyes, such as Congo red and Thioflavin-S. These comparisons were made in postmortem brain tissues from the 5×FAD mice. We observed that Cur and NC labeled Aß plaques to the same degree as Aß-specific antibody and to a greater extent than those of the classical amyloid-binding dyes. Cur and NC also labeled Aß plaques in 5×FAD brain tissues when injected intraperitoneally. Nanomolar concentrations of Cur or NC are sufficient for labeling and imaging of Aß plaques in 5×FAD brain tissue. Cur and NC also labeled different types of Aß plaques, including core, neuritic, diffuse, and burned-out, to a greater degree than other amyloid-binding dyes. Therefore, Cur and or NC can be used as an alternative to Aß-specific antibody for labeling and imaging of Aß plaques ex vivo and in vivo. It can provide an easy and inexpensive means of detecting Aß-plaque load in postmortem brain tissue of animal models of AD after anti-amyloid therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/análisis , Encéfalo/metabolismo , Colorantes/administración & dosificación , Colorantes/análisis , Curcumina/administración & dosificación , Curcumina/análisis , Placa Amiloide/metabolismo , Administración Oral , Péptidos beta-Amiloides/química , Animales , Colorantes/química , Curcumina/análogos & derivados , Curcumina/química , Dieta , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Estructura Molecular , Nanoestructuras/administración & dosificación , Nanoestructuras/análisis , Placa Amiloide/química , Solubilidad
13.
Int J Mol Sci ; 17(2)2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26848657

RESUMEN

The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington's disease, Parkinson's disease and Alzheimer's disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs) have significant potential for enhancing the efficacy of cell replacement therapies.


Asunto(s)
Proliferación Celular/genética , Epigénesis Genética , Células-Madre Neurales/citología , Enfermedades Neurodegenerativas/terapia , Neurogénesis/genética , Animales , Humanos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante
14.
J Biol Chem ; 288(6): 4056-65, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23264626

RESUMEN

The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Conducta Animal/efectos de los fármacos , Curcumina/farmacología , Proteínas de Choque Térmico/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sinapsis/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Homólogo 4 de la Proteína Discs Large , Femenino , Proteínas de Choque Térmico/genética , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Multimerización de Proteína/genética , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidad/efectos de los fármacos , Sinapsis/genética , Sinapsis/patología , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
15.
Neurobiol Dis ; 69: 169-79, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24892886

RESUMEN

We previously demonstrated that RanBP9 overexpression increased Aß generation and amyloid plaque burden, subsequently leading to robust reductions in the levels of several synaptic proteins as well as deficits in the learning and memory skills in a mouse model of Alzheimer's disease (AD). In the present study, we found striking reduction of spinophilin-immunoreactive puncta (52%, p<0.001) and spinophilin area (62.5%, p<0.001) in the primary cortical neurons derived from RanBP9 transgenic mice (RanBP9-Tg) compared to wild-type (WT) neurons. Similar results were confirmed in WT cortical neurons transfected with EGFP-RanBP9. At 6-months of age, the total spine density in the cortex of RanBP9 single transgenic, APΔE9 double transgenic and APΔE9/RanBP9 triple transgenic mice was similar to WT mice. However, in the hippocampus the spine density was significantly reduced (27%, p<0.05) in the triple transgenic mice compared to WT mice due to reduced number of thin spines (33%, p<0.05) and mushroom spines (22%, p<0.05). This suggests that RanBP9 overexpression in the APΔE9 mice accelerates loss of spines and that the hippocampus is more vulnerable. At 12-months of age, the cortex showed significant reductions in total spine density in the RanBP9 (22%, p<0.05), APΔE9 (19%, p<0.05) and APΔE9/RanBP9 (33%, p<0.01) mice compared to WT controls due to reductions in mushroom and thin spines. Similarly, in the hippocampus the total spine density was reduced in the RanBP9 (23%, p<0.05), APΔE9 (26%, p<0.05) and APΔE9/RanBP9 (39%, p<0.01) mice due to reductions in thin and mushroom spines. Most importantly, RanBP9 overexpression in the APΔE9 mice further exacerbated the reductions in spine density in both the cortex (14%, p<0.05) and the hippocampus (16%, p<0.05). Because dendritic spines are considered physical traces of memory, loss of spines due to RanBP9 provided the physical basis for the learning and memory deficits. Since RanBP9 protein levels are increased in AD brains, RanBP9 might play a crucial role in the loss of spines and synapses in AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/fisiopatología , Corteza Cerebral/fisiopatología , Proteínas del Citoesqueleto/metabolismo , Espinas Dendríticas/fisiología , Hipocampo/fisiopatología , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Envejecimiento/patología , Envejecimiento/fisiología , Enfermedad de Alzheimer/patología , Animales , Células Cultivadas , Corteza Cerebral/patología , Proteínas del Citoesqueleto/genética , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuronas/fisiología , Proteínas Nucleares/genética , Transfección
16.
Brain ; 135(Pt 12): 3735-48, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23183235

RESUMEN

Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid ß protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple amyloidogenic proteins, including amyloid ß protein and tau, by disrupting key interactions involved in the assembly process. Following up on these encouraging findings, here, we asked whether CLR01 could protect primary neurons from Alzheimer's disease-associated synaptotoxicity and reduce Alzheimer's disease-like pathology in vivo. Using cell culture and brain slices, we found that CLR01 effectively inhibited synaptotoxicity induced by the 42-residue isoform of amyloid ß protein, including ∼80% inhibition of changes in dendritic spines density and long-term potentiation and complete inhibition of changes in basal synaptic activity. Using a radiolabelled version of the compound, we found that CLR01 crossed the mouse blood-brain barrier at ∼2% of blood levels. Treatment of 15-month-old triple-transgenic mice for 1 month with CLR01 resulted in a decrease in brain amyloid ß protein aggregates, hyperphosphorylated tau and microglia load as observed by immunohistochemistry. Importantly, no signs of toxicity were observed in the treated mice, and CLR01 treatment did not affect the amyloidogenic processing of amyloid ß protein precursor. Examining induction or inhibition of the cytochrome P450 metabolism system by CLR01 revealed minimal interaction. Together, these data suggest that CLR01 is safe for use at concentrations well above those showing efficacy in mice. The efficacy and toxicity results support a process-specific mechanism of action of molecular tweezers and suggest that these are promising compounds for developing disease-modifying therapy for Alzheimer's disease and related disorders.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Encéfalo/patología , Lisina/química , Neuronas/fisiología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Antiparasitarios/química , Antiparasitarios/uso terapéutico , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/fisiología , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Conducta Exploratoria/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Lisina/farmacología , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Isoformas de Proteínas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Proteínas tau/genética
18.
Biochem J ; 433(2): 323-32, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21044048

RESUMEN

Aß (amyloid ß-peptide) is believed to cause AD (Alzheimer's disease). Aß42 (Aß comprising 42 amino acids) is substantially more neurotoxic than Aß40 (Aß comprising 40 amino acids), and this increased toxicity correlates with the existence of unique Aß42 oligomers. Met³5 oxidation to sulfoxide or sulfone eliminates the differences in early oligomerization between Aß40 and Aß42. Met³5 oxidation to sulfoxide has been reported to decrease Aß assembly kinetics and neurotoxicity, whereas oxidation to sulfone has rarely been studied. Based on these data, we expected that oxidation of Aß to sulfone would also decrease its toxicity and assembly kinetics. To test this hypothesis, we compared systematically the effect of the wild-type, sulfoxide and sulfone forms of Aß40 and Aß42 on neuronal viability, dendritic spine morphology and macroscopic Ca²(+) currents in primary neurons, and correlated the data with assembly kinetics. Surprisingly, we found that, in contrast with Aß-sulfoxide, Aß-sulfone was as toxic and aggregated as fast, as wild-type Aß. Thus, although Aß-sulfone is similar to Aß-sulfoxide in its dipole moment and oligomer size distribution, it behaves similarly to wild-type Aß in its aggregation kinetics and neurotoxicity. These surprising data decouple the toxicity of oxidized Aß from its initial oligomerization, and suggest that our current understanding of the effect of methionine oxidation in Aß is limited.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Sulfonas/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/ultraestructura , Animales , Apoptosis , Células Cultivadas , Cinética , Microscopía Electrónica , Estructura Molecular , Neuronas/química , Neuronas/citología , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
19.
Biochemistry ; 50(49): 10687-97, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22059533

RESUMEN

Self-assembly of amyloid ß-protein (Aß) into toxic oligomers and fibrillar polymers is believed to cause Alzheimer's disease (AD). In the AD brain, a high percentage of Aß contains Met-sulfoxide at position 35, though the role this modification plays in AD is not clear. Oxidation of Met(35) to sulfoxide has been reported to decrease the extent of Aß assembly and neurotoxicity, whereas surprisingly, oxidation of Met(35) to sulfone yields a toxicity similar to that of unoxidized Aß. We hypothesized that the lower toxicity of Aß-sulfoxide might result not only from structural alteration of the C-terminal region but also from activation of methionine-sulfoxide reductase (Msr), an important component of the cellular antioxidant system. Supporting this hypothesis, we found that the low toxicity of Aß-sulfoxide correlated with induction of Msr activity. In agreement with these observations, in MsrA(-/-) mice the difference in toxicity between native Aß and Aß-sulfoxide was essentially eliminated. Subsequently, we found that treatment with N-acetyl-Met-sulfoxide could induce Msr activity and protect neuronal cells from Aß toxicity. In addition, we measured Msr activity in a double-transgenic mouse model of AD and found that it was increased significantly relative to that of nontransgenic mice. Immunization with a novel Met-sulfoxide-rich antigen for 6 months led to antibody production, decreased Msr activity, and lowered hippocampal plaque burden. The data suggest an important neuroprotective role for the Msr system in the AD brain, which may lead to development of new therapeutic approaches for AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Neuronas/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Metionina/análogos & derivados , Metionina/inmunología , Metionina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
20.
Int J Neurosci ; 121(5): 279-88, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21348795

RESUMEN

High altitude (HA) generates a deleterious effect known as hypobaric hypoxia (HBH). This causes severe physiological and psychological changes such as acute mountain sickness (AMS) and cognitive functions in terms of learning and memory. The present study has evaluated the effect of cholinesterase inhibitors on memory consolidation following HBH. Adult male Sprague Dawley rats (80-90 days old) with an average body weight of 250 ± 25 g were used. Rats were assessed memory consolidation by using Morris water maze (MWM) for 8 days. After assessment of memory consolidation, rats were then exposed to HBH in stimulated chamber for 7 days at 6,100 m. After exposure to HBH, the memory consolidation of rats has been assessed in MWM. The results showed that there was memory consolidation impairment in HBH-exposed rats as compared to normoxic rats in terms of time spent in quaradents, rings, and counters. The rats which have been treated with physostigmine (PHY) and galantamine (GAL) showed better time spent in quaradents, rings, and counters as compared with hypoxic rats. In conclusion, the cholinesterase inhibitors could ameliorate the impairment of memory consolidation following HBH.


Asunto(s)
Mal de Altura/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Hipoxia Encefálica/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Memoria/efectos de los fármacos , Acetilcolina/agonistas , Acetilcolina/fisiología , Presión del Aire , Mal de Altura/complicaciones , Mal de Altura/enzimología , Animales , Modelos Animales de Enfermedad , Galantamina/farmacología , Hipoxia Encefálica/complicaciones , Hipoxia Encefálica/enzimología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/etiología , Fisostigmina/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA