Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microbiology (Reading) ; 158(Pt 2): 571-582, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22117006

RESUMEN

Determining transcription factor (TF) recognition motifs or operator sites is central to understanding gene regulation, yet few operators have been characterized. In this study, we used a protein-binding microarray (PBM) to discover the DNA recognition sites and putative regulons for three TetR and one MarR family TFs derived from Burkholderia xenovorans, which are common to the genus Burkholderia. We also describe the development and application of a more streamlined version of the PBM technology that significantly reduced the experimental time. Despite the genus containing many pathogenically important species, only a handful of TF operator sites have been experimentally characterized for Burkholderia to date. Our study provides a significant addition to this knowledge base and illustrates some general challenges of discovering operators on a large scale for prokaryotes.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia/genética , Regiones Operadoras Genéticas , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Burkholderia/química , Burkholderia/clasificación , Burkholderia/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética
2.
Biochem J ; 415(3): 429-37, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18564060

RESUMEN

The mammalian SRP (signal recognition particle) represents an important model for the assembly and role of inter-domain interactions in complex RNPs (ribonucleoproteins). In the present study we analysed the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apices of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either co-operative or energetically neutral interactions among components. By contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs.


Asunto(s)
Partícula de Reconocimiento de Señal/química , Sitios de Unión , Humanos , Modelos Moleculares , Conformación Proteica , ARN/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
3.
J Mol Biol ; 369(2): 512-24, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17434535

RESUMEN

Intermediate states play well-established roles in the folding and misfolding reactions of individual RNA and protein molecules. In contrast, the roles of transient structural intermediates in multi-component ribonucleoprotein (RNP) assembly processes and their potential for misassembly are largely unexplored. The SRP19 protein is unstructured but forms a compact core domain and two extended RNA-binding loops upon binding the signal recognition particle (SRP) RNA. The SRP54 protein subsequently binds to the fully assembled SRP19-RNA complex to form an intimate threefold interface with both SRP19 and the RNA and without significantly altering the structure of SRP19. We show, however, that the presence of SRP54 during SRP19-RNA assembly dramatically alters the folding energy landscape to create a non-native folding pathway that leads to an aberrant SRP19-RNA conformation. The misassembled complex arises from the surprising ability of SRP54 to bind rapidly to an SRP19-RNA assembly intermediate and to interfere with subsequent folding of one of the RNA binding loops at the three-way protein-RNA interface. An incorrect temporal order of assembly thus readily yields a non-native three-component ribonucleoprotein particle. We propose there may exist a general requirement to regulate the order of interaction in multi-component RNP assembly reactions by spatial or temporal compartmentalization of individual constituents in the cell.


Asunto(s)
ARN/química , Ribonucleoproteínas/química , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Secuencia de Bases , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Humanos , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Pliegue de Proteína , Estructura Cuaternaria de Proteína , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
4.
J Mol Biol ; 384(4): 967-79, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18948111

RESUMEN

Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Unión Proteica , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
5.
Biochemistry ; 45(50): 14955-64, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17154533

RESUMEN

Many ribonucleoprotein complexes assemble stepwise in distinct cellular compartments, a process that usually involves bidirectional transport of both RNA and proteins between the nucleus and cytoplasm. The biological rationale for such complex transport steps in RNP assembly is obscure. One important example is the eukaryotic signal recognition particle (SRP), a cytoplasmic RNP consisting of one RNA and six proteins. Prior in vivo studies support an "SRP54-late" assembly model in which all SRP proteins, except SRP54, are imported from the cytoplasm to the nucleus to bind SRP RNA. This partially assembled complex is then exported to the cytoplasm where SRP54 binds and forms the SRP holocomplex. Here we show that native SRP assembly requires segregated and ordered binding by its protein components. A native ternary complex forms in vitro when SRP19 binds the SRP RNA prior to binding by SRP54, which approximates the eukaryotic cellular pathway. In contrast, the presence of SRP54 disrupts native assembly of SRP19, such that two RNA-binding loops in SRP19 misfold. These results imply that SRP54 must be sequestered during early SRP assembly steps, as apparently occurs in vivo, for proper assembly of the SRP to occur. Our findings emphasize that spatial compartmentalization provides an additional level of regulation that prevents competition among components and can function to promote native assembly of the eukaryotic SRP.


Asunto(s)
ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica/genética , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/genética , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA