Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Proteomics ; 21(1): 4, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254014

RESUMEN

BACKGROUND: Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS: Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS: LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS: Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.

2.
Proc Natl Acad Sci U S A ; 111(19): 7018-23, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778227

RESUMEN

The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways.


Asunto(s)
Tamaño Corporal/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Insulina/metabolismo , Hormonas Juveniles/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corpora Allata/crecimiento & desarrollo , Corpora Allata/fisiología , Corpora Allata/cirugía , Desnervación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ecdisona/biosíntesis , Ecdisona/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hormonas Juveniles/biosíntesis , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología
3.
Clin Exp Metastasis ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917186

RESUMEN

Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.

4.
J Vis Exp ; (184)2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35723500

RESUMEN

The tumor microenvironment (TME) represents a complex ecosystem comprised of dozens of distinct cell types, including tumor, stroma, and immune cell populations. To characterize proteome-level variation and tumor heterogeneity at scale, high-throughput methods are needed to selectively isolate discrete cellular populations in solid tumor malignancies. This protocol describes a high-throughput workflow, enabled by artificial intelligence (AI), that segments images of hematoxylin and eosin (H&E)-stained, thin tissue sections into pathology-confirmed regions of interest for selective harvest of histology-resolved cell populations using laser microdissection (LMD). This strategy includes a novel algorithm enabling the transfer of regions denoting cell populations of interest, annotated using digital image software, directly to laser microscopes, thus enabling more facile collections. Successful implementation of this workflow was performed, demonstrating the utility of this harmonized method to selectively harvest tumor cell populations from the TME for quantitative, multiplexed proteomic analysis by high-resolution mass spectrometry. This strategy fully integrates with routine histopathology review, leveraging digital image analysis to support enrichment of cellular populations of interest and is fully generalizable, enabling harmonized harvests of cell populations from the TME for multiomic analyses.


Asunto(s)
Neoplasias , Proteómica , Inteligencia Artificial , Ecosistema , Humanos , Captura por Microdisección con Láser/métodos , Rayos Láser , Neoplasias/metabolismo , Proteómica/métodos , Microambiente Tumoral
5.
Nat Commun ; 5: 4184, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24924309

RESUMEN

Large gaps in basement membrane (BM) occur during organ remodelling and cancer cell invasion. Whether dividing cells, which temporarily reduce their attachment to BM, influence these breaches is unknown. Here we analyse uterine-vulval attachment during development across 21 species of rhabditid nematodes and find that the BM gap that forms between these organs is always bounded by a non-dividing vulval cell. Through cell cycle manipulation and live cell imaging in Caenorhabditis elegans, we show that actively dividing vulval cells facilitate enlargement of this breach by promoting BM movement. In contrast, targeted cell cycle arrest halts BM movement and limits gap opening. Further, we demonstrate that the BM component laminin accumulates at the BM gap edge and promotes increased integrin levels in non-dividing vulval cells, stabilizing gap position. Together, these studies reveal that cell division can be used as a mechanism to regulate BM breaches, thus controlling the exchange of cells between tissues.


Asunto(s)
Membrana Basal/metabolismo , Caenorhabditis elegans/citología , Puntos de Control del Ciclo Celular , Animales , Membrana Basal/crecimiento & desarrollo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Laminina/genética , Laminina/metabolismo , Vulva/citología , Vulva/crecimiento & desarrollo , Vulva/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA