Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321668121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557180

RESUMEN

The ultimate regularity of quantum mechanics creates a tension with the assumption of classical chaos used in many of our pictures of chemical reaction dynamics. Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford have suggested a fundamental quantum bound for the rate of information scrambling, which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we use OTOCs to study model reactions based on a double-well reaction coordinate coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, as one enters the tunneling regime where the reaction rate does not strongly depend on temperature, the quantum Lyapunov exponent can approach the scrambling bound and the effective reaction rate obtained from a population correlation function can approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by expanding the state space available to the system. The coupling of a dissipative continuum bath to the reaction coordinate reduces the scrambling rate obtained from the early-time OTOC, thus making the scrambling bound harder to reach, in the same way that friction is known to lower the temperature at which thermally activated barrier crossing goes over to the low-temperature activationless tunneling regime. Thus, chemical reactions entering the tunneling regime can be information scramblers as powerful as the black holes to which the quantum Lyapunov exponent bound has usually been applied.

2.
Annu Rev Phys Chem ; 73: 349-375, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35081322

RESUMEN

Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features.


Asunto(s)
Bacterioclorofilas , Vibración , Transferencia de Energía
3.
J Chem Phys ; 158(14): 144107, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061502

RESUMEN

Some topological features of multisite Hamiltonians consisting of harmonic potential surfaces with constant site-to-site couplings are discussed. Even in the absence of Duschinsky rotation, such a Hamiltonian assumes the system-bath form only if severe constraints exist. The simplest case of a common bath that couples to all sites is realized when the potential minima are collinear. The bath reorganization energy increases quadratically with site distance in this case. Another frequently encountered situation involves exciton-vibration coupling in molecular aggregates, where the intramolecular normal modes of the monomers give rise to local harmonic potentials. In this case, the reorganization energy accompanying excitation transfer is independent of site-to-site separation, thus this situation cannot be described by the usual system-bath Hamiltonian. A vector system-bath representation is introduced, which brings the exciton-vibration Hamiltonian in system-bath form. In this, the system vectors specify the locations of the potential minima, which in the case of identical monomers lie on the vertices of a regular polyhedron. By properly choosing the system vectors, it is possible to couple each bath to one or more sites and to specify the desired initial density. With a collinear choice of system vectors, the coupling reverts to the simple form of a common bath. The compact form of the vector system-bath coupling generalizes the dissipative tight-binding model to account for local, correlated, and common baths. The influence functional for the vector system-bath Hamiltonian is obtained in a compact and simple form.

4.
J Chem Phys ; 158(22)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37293962

RESUMEN

This paper reports the release of PathSum, a new software suite of state-of-the-art path integral methods for studying the dynamics of single or extended systems coupled to harmonic environments. The package includes two modules, suitable for system-bath problems and extended systems comprising many coupled system-bath units, and is offered in C++ and Fortran implementations. The system-bath module offers the recently developed small matrix path integral (SMatPI) and the well-established iterative quasi-adiabatic propagator path integral (i-QuAPI) method for iteration of the reduced density matrix of the system. In the SMatPI module, the dynamics within the entanglement interval can be computed using QuAPI, the blip sum, time evolving matrix product operators, or the quantum-classical path integral method. These methods have distinct convergence characteristics and their combination allows a user to access a variety of regimes. The extended system module provides the user with two algorithms of the modular path integral method, applicable to quantum spin chains or excitonic molecular aggregates. An overview of the methods and code structure is provided, along with guidance on method selection and representative examples.


Asunto(s)
Algoritmos , Teoría Cuántica , Programas Informáticos
5.
J Am Chem Soc ; 144(14): 6298-6310, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353523

RESUMEN

Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers (meso-beta linked ABm-ß and meso-meso linked AAm-m). While both ABm-ß and AAm-m feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in ABm-ß and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled AAm-m dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in ABm-ß. Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies.


Asunto(s)
Porfirinas , Electrónica , Modelos Teóricos , Porfirinas/química , Análisis Espectral , Vibración
6.
J Chem Phys ; 157(1): 015101, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803821

RESUMEN

We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton-vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang-Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton-vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/e time of 0.5 ps, which is in good agreement with experimental results.


Asunto(s)
Complejos de Proteína Captadores de Luz , Rhodopseudomonas , Proteínas Bacterianas , Bacterioclorofilas , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Rhodopseudomonas/metabolismo
7.
Phys Chem Chem Phys ; 23(22): 12537-12540, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34042139

RESUMEN

The modular path integral (MPI) formulation for one-dimensional extended systems, such as spin arrays or molecular aggregates, allows evaluation of spin- or exciton-vibration dynamics with effort that scales linearly with the number of units. This work presents a small matrix decomposition of the modular path integral (SMatMPI), which eliminates tensor storage and enables iterative long-time propagation.

8.
Phys Chem Chem Phys ; 23(29): 15503-15514, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34286768

RESUMEN

The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton-vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton-vibration interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these features through dephasing.

9.
Phys Chem Chem Phys ; 23(9): 5113-5124, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33623944

RESUMEN

The time evolution of the purity (the trace of the square of the reduced density matrix) and von Neumann entropy in a symmetric two-level system coupled to a dissipative harmonic bath is investigated through analytical arguments and accurate path integral calculations on simple models and the singly excited bacteriochlorophyll dimer. A simple theoretical analysis establishes bounds and limiting behaviors. The contributions to purity from a purely incoherent term obtained from the diagonal elements of the reduced density matrix, a term associated with the difference of the two eigenstate populations, and a third term related to the square of the time derivative of a site population, are discussed in various regimes. In the case of tunneling dynamics from a localized initial condition, the complex interplay among these contributions leads to the recovery of purity under low-temperature, weakly dissipative conditions. Memory effects from the bath are found to play a critical role to the dynamics of purity. It is shown that the strictly quantum mechanical decoherence process associated with spontaneous phonon emission is responsible for the long-time recovery of purity. These analytical and numerical results show clearly that the loss of quantum coherence during the evolution toward equilibrium does not necessarily imply the decay of purity, and that the time scales relevant to these two processes may be entirely different.

10.
Phys Chem Chem Phys ; 23(9): 5125-5133, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33624643

RESUMEN

We investigate the time evolution of the reduced density matrix (RDM) and its purity in the dynamics of a two-level system coupled to a dissipative harmonic bath, when the system is initially placed in one of its eigenstates. We point out that the symmetry of the initial condition confines the motion of the RDM elements to a one-dimensional subspace and show that the purity always goes through its maximally mixed value at some time during relaxation, but subsequently recovers and (under low-temperature, weakly dissipative conditions) can rise to values that approach unity. These behaviors are quantified through accurate path integral calculations. Under low-temperature, weakly dissipative conditions, we observe unusual, nonmonotonic population dynamics when the two-level system is initially placed in its ground state. We also analyze the origin of the system-bath interactions responsible for the nonmonotonic behavior of purity during relaxation. Our results show that classical dephasing processes arising from site level fluctuations lead to a monotonic decay of purity, and that the quantum mechanical decoherence events associated with spontaneous phonon emission are responsible for the subsequent recovery of purity. Last, we show that coupling with a low-temperature bath can purify a mixed two-level system. In the case of the maximally mixed initial RDM, the purity increases monotonically even during short time.

11.
J Phys Chem A ; 125(48): 10500-10506, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34812645

RESUMEN

The small matrix decomposition of the quasi-adiabatic propagator path integral (SMatPI) for a system coupled to a harmonic bath, which accounts for multitime memory correlations in the influence functional without the use of tensors, is extended to include a time-dependent term that drives the system. In the case of a periodic field, the algorithm requires the construction of SMatPI matrices initialized over a short time interval. The SMatPI algorithm circumvents the large array storage of tensor-based iterative path integral decompositions and, in the case of a periodic field, also eliminates the demanding tensor multiplication at each time step, leading to dramatic savings which allow the fully quantum mechanical treatment of multistate systems and long-memory environments.

12.
J Chem Phys ; 155(23): 234705, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937374

RESUMEN

The modular path integral methodology is used to extend the well-known spin-boson dynamics to finite-length quantum Ising chains, where each spin is coupled to a dissipative harmonic bath. The chain is initially prepared in the ferromagnetic phase where all spins are aligned, and the magnetization is calculated with spin-spin coupling parameters corresponding to the paramagnetic phase, mimicking a quantum quench experiment. The observed dynamics is found to depend significantly on the location of the tagged spin. In the absence of a dissipative bath, the time evolution displays irregular patterns that arise from multiple frequencies associated with the eigenvalues of the chain Hamiltonian. Coupling of each spin to a harmonic bath leads to smoother dynamics, with damping effects that are stronger compared to those observed in the spin-boson model and more prominent in interior spins, a consequence of additional damping from the spin environment. Interior spins exhibit a transition from underdamped oscillatory to overdamped monotonic dynamics as the temperature, spin-bath, or spin-spin coupling is increased. In addition to these behaviors, a new dynamical pattern emerges in the evolution of edge spins with strong spin-spin coupling at low and intermediate temperatures, where the magnetization oscillates either above or below the equilibrium value.

13.
J Chem Phys ; 154(11): 114301, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33752338

RESUMEN

We investigate the role of intramolecular normal mode vibrations in the excitation energy transfer (EET) dynamics of perylene bisimide J-aggregates composed of 2 or 25 units using numerically exact methods. The calculations employ a Frenkel exciton Hamiltonian where the ground and excited electronic states of each molecular unit are coupled to 28 intramolecular normal mode vibrations at various temperatures. The electronic populations exhibit strong damping effects, a lengthening of the EET time scale, and complex dynamical patterns, which depend on aggregate length, temperature, as well as electronic and vibrational initial conditions and which are not additive. The early evolution is dominated by high-frequency vibrational modes, but all modes are responsible for the observed dynamics after the initial 25 fs. Overall, we observe significant changes in the electronic populations upon varying the temperature between 0 and 600 K. With a Franck-Condon (FC) initial excitation, a strongly coupled vibrational mode introduces new peaks to the dimer populations, which show very weak temperature sensitivity. The first of these peaks is also seen in the long aggregate, but subsequent recurrences appear strongly quenched and merged. These structures are drastically altered if a non-FC initial condition is assumed. Additional insights are obtained from the diagonal elements of the dimer electronic-vibrational reduced density matrix. We find that the vibronic peaks result from depletion of the crossing region during the early coherent evolution of the vibrational density away from the crossing point, which allows the premature back-transfer of excitation to the initially excited unit.

14.
J Chem Phys ; 152(4): 041104, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32007067

RESUMEN

The discretized path integral expression for the reduced density matrix (RDM) of a system interacting with a dissipative harmonic bath is fully entangled because of influence functional terms that couple the variables at different time points. The iterative decomposition of the path integral, which exploits the finite length of influence functional memory, involves a tensor propagator whose size grows exponentially with the memory length. The present Communication disentangles the path integral by recursively spreading the temporal entanglement over longer path segments, while decreasing its contribution. Eventually, the entangled term becomes sufficiently small and may be neglected, leading to iterative propagation of the RDM through simple multiplication of matrices whose size is equal to that of the bare system. It is found that the temporal entanglement length is practically equal to the bath-induced memory length. The small matrix decomposition of the path integral (SMatPI) is stable and very efficient, extending the applicability of numerically exact real-time path integral methods to multi-state systems.

15.
J Chem Phys ; 153(4): 044124, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752674

RESUMEN

The modular decomposition of the path integral is a linear-scaling, numerically exact algorithm for calculating dynamical properties of extended systems composed of multilevel units with local couplings. In a recent article, we generalized the method to wavefunction propagation in aggregates characterized by non-diagonal couplings between adjacent units. Here, we extend the method to the calculation of reduced density matrices in aggregates where each unit includes an arbitrary number of coupled harmonic bath modes, which may describe intramolecular normal mode vibrations, at finite temperature. The effects of harmonic modes are included through influence functional factors, which involve analytical expressions that we derive. Representative applications to spin arrays described by the Heisenberg Hamiltonian with dissipative interactions and to J-aggregates of perylene bisimide, where all coupled normal modes are treated explicitly, are presented.

16.
J Chem Inf Model ; 59(5): 2165-2174, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30807138

RESUMEN

Accounting for zero-point energy in the initial conditions of classical trajectory calculations of time correlation functions requires sampling from a quantized phase space distribution, which is often chosen as the Weyl-Wigner transform of a thermalized operator. The numerical construction of the latter and its use as a sampling function can be challenging. We show that the operator dependence of the phase space distribution can be transferred to the dynamics, allowing sampling from the simpler Wigner phase space density. The method involves augmenting the classical equations of motion with additional differential equations for elements of the stability matrix. We also propose a local harmonic approximation for the dynamical derivatives, which significantly reduces the computational cost required to obtain correlation functions of nonlinear operators. We illustrate the method with application to linear and nonlinear correlation functions of model Hamiltonians. While the local harmonic approximation is not always successful in predicting nonlinear correlation functions of one degree of freedom, it quantitatively captures the full quasiclassical results for systems in contact with dissipative environments.


Asunto(s)
Teoría Cuántica , Dinámicas no Lineales
17.
J Phys Chem A ; 123(19): 4284-4294, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-30986061

RESUMEN

The accurate evaluation of the Wigner phase space density for multidimensional system remains a challenging task. Path integral Monte Carlo methods offer a numerically exact approach for obtaining the Boltzmann density in coordinate space, but the Fourier-type integral required to construct the Wigner distribution generally leads to poor convergence. This paper describes a path integral method for constructing the Wigner density which substantially mitigates the Monte Carlo sign problem and thus is applicable to systems with many degrees of freedom. The starting point is the path integral representation of the coherent state density, which does not involve a Fourier integral and thus converges rapidly. We then use the relation between the coherent state and Wigner densities to construct the Wigner function, taking advantage of destructive phase cancellation to truncate the infinite series and thus confine the integrand, avoiding highly oscillatory regions. We also describe the use of information-guided noise reduction (IGNoR) to improve the Monte Carlo statistics in the most challenging regimes. The method is applied to strongly anharmonic one-dimensional models, a system-bath Hamiltonian, as well as the formamide molecule within an ab initio quartic potential, and the results are compared to those obtained by various approximate methods. These calculations suggest that the coherent state-based path integral method described in this paper offers an efficient, numerically exact approach for constructing the Wigner phase space density in systems of many degrees of freedom, and thus will be useful for quantizing the initial condition in classical trajectory-based simulations of dynamical properties.

18.
J Chem Phys ; 150(18): 184102, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091934

RESUMEN

The quantum-classical path integral (QCPI) provides a rigorous methodology for simulating condensed phase processes when a fully quantum mechanical description of a small subsystem is necessary. While full QCPI calculations have been shown to be feasible on parallel computing platforms, the large number of trajectory calculations required leads to computational cost that significantly exceeds that of classical molecular dynamics calculations. This paper describes the harmonic back-reaction (HBR) approximation to the QCPI expression, which reduces dramatically the computational cost by requiring a single classical trajectory from each initial condition. Test calculations on a model of strongly anharmonic oscillators show that the HBR treatment quantitatively reproduces the full QCPI results. The HBR-QCPI algorithm is applicable to a variety of condensed phase and biological systems with effort only somewhat greater than that of molecular dynamics simulations.

19.
J Chem Phys ; 151(7): 074110, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438715

RESUMEN

The modular decomposition of the path integral, which leads to linear scaling with the system length, is extended to Hamiltonians with intermonomer couplings that are not diagonalizable in any single-particle basis. An optimal factorization of the time evolution operator is identified, which minimizes the number of path integral variables while ensuring high accuracy and preservation of detailed balance. The modular path integral decomposition is described, along with a highly efficient tensor factorization of the path linking process. The algorithm is illustrated with applications to a model of coupled spins and a Frenkel exciton chain.

20.
J Chem Phys ; 148(10): 101101, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29544294

RESUMEN

It is shown that dynamical properties of extended systems (spin arrays, large organic molecules, or molecular aggregates) characterized primarily by local potential interactions (bond stretching, bending, and torsional interactions) can be obtained efficiently from fully quantum mechanical path integral calculations through sequential linking of the quantum paths or path integral necklaces corresponding to adjacent groups of atoms, which comprise the "modules." The scheme is applicable to complex chemical systems and is characterized by linear or sublinear scaling with system size. It is ideally suited to studies of vibrational energy flow and heat transport in long molecules (which may also be attached to solids), as well as simulations of exciton-vibration dynamics in molecular aggregates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA