Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
IJID Reg ; 11: 100354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38596821

RESUMEN

Objectives: Annual outbreaks of human respiratory syncytial virus (HRSV) are caused by newly introduced and locally persistent strains. During the COVID-19 pandemic, global and local circulation of HRSV significantly decreased. This study was conducted to characterize HRSV in 2018-2022 and to analyze the impact of COVID-19 on the evolution of HRSV. Design/methods: Combined oropharyngeal and nasopharyngeal swabs were collected from children hospitalized with severe acute respiratory infection at two hospitals in Zambia. The second hypervariable region of the attachment gene G was targeted for phylogenetic analysis. Results: Of 3113 specimens, 504 (16.2%) were positive for HRSV, of which 131 (26.0%) and 66 (13.1%) were identified as HRSVA and HRSVB, respectively. In early 2021, an increase in HRSV was detected, caused by multiple distinct clades of HRSVA and HRSVB. Some were newly introduced, whereas others resulted from local persistence. Conclusions: This study provides insights into the evolution of HRSV, driven by global and local circulation. The COVID-19 pandemic had a temporal impact on the evolution pattern of HRSV. Understanding the evolution of HRSV is vital for developing strategies for its control.

2.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38140164

RESUMEN

The occurrence of rotavirus (RV) infection among vaccinated children in high-burden settings poses a threat to further disease burden reduction. Genetically altered viruses have the potential to evade both natural infection and vaccine-induced immune responses, leading to diarrheal diseases among vaccinated children. Studies characterizing RV strains responsible for breakthrough infections in resource-limited countries where RV-associated diarrheal diseases are endemic are limited. We aimed to characterize RV strains detected in fully vaccinated children residing in Zambia using next-generation sequencing. We conducted whole genome sequencing on Illumina MiSeq. Whole genome assembly was performed using Geneious Prime 2023.1.2. A total of 76 diarrheal stool specimens were screened for RV, and 4/76 (5.2%) were RV-positive. Whole genome analysis revealed RVA/Human-wt/ZMB/CIDRZ-RV2088/2020/G1P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and RVA/Human-wt/ZMB/CIDRZ-RV2106/2020/G12P[4]-I1-R2-C2-M2-A2-N1-T2-E1-H2 strains were mono and multiple reassortant (exchanged genes in bold) respectively, whilst RVA/Human-wt/ZMB/CIDRZ-RV2150/2020/G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 was a typical Wa-like strain. Comparison of VP7 and VP4 antigenic epitope of breakthrough strains and Rotarix strain revealed several amino acid differences. Variations in amino acids in antigenic epitope suggested they played a role in immune evasion of neutralizing antibodies elicited by vaccination. Findings from this study have the potential to inform national RV vaccination strategies and the design of highly efficacious universal RV vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA