Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36444722

RESUMEN

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo
2.
Vasc Med ; 28(1): 18-27, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36503365

RESUMEN

BACKGROUND: Circulating angiogenic cells (CACs) are indicative of vascular health and repair capacity; however, their relationship with chronic e-cigarette use is unclear. This study aims to assess the association between e-cigarette use and CAC levels. METHODS: We analyzed CAC levels in 324 healthy participants aged 21-45 years from the cross-sectional Cardiovascular Injury due to Tobacco Use study in four groups: never tobacco users (n = 65), sole e-cigarette users (n = 19), sole combustible cigarette users (n = 212), and dual users (n = 28). A total of 15 CAC subpopulations with four cell surface markers were measured using flow cytometry: CD146 (endothelial), CD34 (stem), CD45 (leukocyte), and AC133 (early progenitor/stem). Generalized linear models with gamma distribution and log-link were generated to assess association between CACs and smoking status. Benjamini-Hochberg were used to adjust p-values for multiple comparisons. RESULTS: The cohort was 47% female, 51% Black/African American, with a mean (± SD) age of 31 ± 7 years. Sole cigarette use was significantly associated with higher levels of two endothelial marker CACs (Q ⩽ 0.05). Dual users had higher levels of four endothelial marker CACs and one early progenitor/stem marker CAC (Q ⩽ 0.05). Sole e-cigarette users had higher levels of one endothelial and one leukocyte marker CAC (Q ⩽ 0.05). CONCLUSION: Dual use of e-cigarettes and combustible cigarettes was associated with higher levels of endothelial origin CACs, indicative of vascular injury. Sole use of e-cigarettes was associated with higher endothelial and inflammatory CACs, suggesting ongoing systemic injury. Distinct patterns of changes in CAC subpopulations suggest that CACs may be informative biomarkers of changes in vascular health due to tobacco product use.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Humanos , Femenino , Adulto Joven , Masculino , Vapeo/efectos adversos , Estudios Transversales , Biomarcadores
3.
Toxicol Appl Pharmacol ; 437: 115877, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35045333

RESUMEN

OBJECTIVE: Volatile organic compounds (VOCs) are airborne toxicants abundant in outdoor and indoor air. High levels of VOCs are also present at various Superfund and other hazardous waste sites; however, little is known about the cardiovascular effects of VOCs. We hypothesized that ambient exposure to VOCs exacerbate cardiovascular disease (CVD) risk by depleting circulating angiogenic cells (CACs). APPROACH AND RESULTS: In this cross-sectional study, we recruited 603 participants with low-to-high CVD risk and measured 15 subpopulations of CACs by flow cytometry and 16 urinary metabolites of 12 VOCs by LC/MS/MS. Associations between CAC and VOC metabolite levels were examined using generalized linear models in the total sample, and separately in non-smokers. In single pollutant models, metabolites of ethylbenzene/styrene and xylene, were negatively associated with CAC levels in both the total sample, and in non-smokers. The metabolite of acrylonitrile was negatively associated with CD45dim/CD146+/CD34+/AC133+ cells and CD45+/CD146+/AC133+, and the toluene metabolite with AC133+ cells. In analysis of non-smokers (n = 375), multipollutant models showed a negative association with metabolites of ethylbenzene/styrene, benzene, and xylene with CD45dim/CD146+/CD34+ cells, independent of other VOC metabolite levels. Cumulative VOC risk score showed a strong negative association with CD45dim/CD146+/CD34+ cells, suggesting that total VOC exposure has a cumulative effect on pro-angiogenic cells. We found a non-linear relationship for benzene, which showed an increase in CAC levels at low, but depletion at higher levels of exposure. Sex and race, hypertension, and diabetes significantly modified VOC associated CAC depletion. CONCLUSION: Low-level ambient exposure to VOCs is associated with CAC depletion, which could compromise endothelial repair and angiogenesis, and exacerbate CVD risk.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Endotelio Vascular/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Compuestos Orgánicos Volátiles/toxicidad , Adulto , Anciano , Contaminantes Atmosféricos/química , Biomarcadores , Femenino , Sustancias Peligrosas , Humanos , Masculino , Persona de Mediana Edad , Estructura Molecular , Fumar , Compuestos Orgánicos Volátiles/química
4.
Environ Toxicol ; 37(2): 245-255, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34717031

RESUMEN

Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.


Asunto(s)
Enfermedades Cardiovasculares , Cloruro de Vinilo , Animales , Dieta Alta en Grasa , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Cloruro de Vinilo/toxicidad
5.
Toxicol Appl Pharmacol ; 431: 115742, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34624356

RESUMEN

Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that benzene exposure is associated with an increased risk for cardiovascular disease. However, it is unclear whether benzene exposure by itself is sufficient to induce cardiovascular toxicity. We examined the effects of benzene inhalation (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on the biomarkers of cardiovascular toxicity in male C57BL/6J mice. Benzene inhalation significantly increased the biomarkers of endothelial activation and injury including endothelial microparticles, activated endothelial microparticles, endothelial progenitor cell microparticles, lung endothelial microparticles, and activated lung and endothelial microparticles while having no effect on circulating levels of endothelial adhesion molecules, endothelial selectins, and biomarkers of angiogenesis. To understand how benzene may induce endothelial injury, we exposed human aortic endothelial cells to benzene metabolites. Of the metabolites tested, trans,trans-mucondialdehyde (10 µM, 18h) was the most toxic. It induced caspases-3, -7 and -9 (intrinsic pathway) activation and enhanced microparticle formation by 2.4-fold. Levels of platelet-leukocyte aggregates, platelet macroparticles, and a proportion of CD4+ and CD8+ T-cells were also significantly elevated in the blood of the benzene-exposed mice. We also found that benzene exposure increased the transcription of genes associated with endothelial cell and platelet activation in the liver; and induced inflammatory genes and suppressed cytochrome P450s in the lungs and the liver. Together, these data suggest that benzene exposure induces endothelial injury, enhances platelet activation and inflammatory processes; and circulatory levels of endothelial cell and platelet-derived microparticles and platelet-leukocyte aggregates are excellent biomarkers of cardiovascular toxicity of benzene.


Asunto(s)
Benceno/toxicidad , Enfermedades Cardiovasculares/inducido químicamente , Sistema Cardiovascular/efectos de los fármacos , Animales , Enfermedades Asintomáticas , Benceno/administración & dosificación , Biomarcadores/sangre , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/patología , Cardiotoxicidad , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/patología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Exposición por Inhalación , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Ratones Endogámicos C57BL
6.
Circ Res ; 124(4): e6-e19, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30595089

RESUMEN

RATIONALE: Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE: We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS: We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE-/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE-/-/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS: Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Aterosclerosis/metabolismo , Regulación hacia Abajo , Receptores de LDL/genética , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Células Cultivadas , Eliminación de Gen , Células HEK293 , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Macrófagos/metabolismo , Ratones , Células Mieloides/metabolismo , Células RAW 264.7 , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación
7.
Toxicol Appl Pharmacol ; 402: 115120, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32634517

RESUMEN

Although crotonaldehyde (CR) is an abundant α,ß-unsaturated aldehyde in mainstream cigarette smoke (MCS), the cardiovascular toxicity of inhaled CR is largely unexplored. Thus, male C57BL/6 J mice were exposed acutely (1 h, 6 h, and 4d) and chronically (12 weeks) to CR (at levels relevant to MCS; 1 and 3 ppm), and cardiovascular and systemic outcomes were measured in vivo and in vitro. Diastolic blood pressure was decreased (hypotension) by both acute and chronic CR exposure. Vascular toxicity of inhaled CR was quantified in isolated aorta in response to agonists of contraction (phenylephrine, PE) and relaxation (acetylcholine, ACh; sodium nitroprusside, SNP). Although no change in contractility was observed, ACh-induced relaxations were augmented after both acute and chronic CR exposures whereas SNP-induced relaxation was enhanced only following 3 ppm CR exposure. Because CR is a known agonist of the transient receptor potential ankyrin 1 (TRPA1) channel, male TRPA1-null mice were exposed to air or CR (4d, 1 ppm) and aortic function assessed in vitro. CR exposure had no effect on TRPA1-null aortic function indicating a role of TRPA1 in CR effects in C57BL/6 J mice. Notably, CR exposure (4d, 1 ppm) had no effect on aortic function in female C57BL/6 J mice. This study shows that CR inhalation exposure induces real-time and persistent vascular changes that promote hypotension-a known risk factor for stroke. Because of continued widespread exposures of humans to combustion-derived CR (environmental and tobacco products), CR may be an important cardiovascular disease risk factor.


Asunto(s)
Aldehídos/toxicidad , Canal Catiónico TRPA1/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Acetilcisteína/orina , Aldehídos/metabolismo , Animales , Aorta/efectos de los fármacos , Esquema de Medicación , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal Catiónico TRPA1/genética , Vasoconstricción/efectos de los fármacos
8.
J Periodontal Res ; 54(5): 566-571, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30982987

RESUMEN

OBJECTIVES: We hypothesized that short chain fatty acid (SCFA) production by oral pathogens is suppressed by exposure to cigarette smoke extract (CSE). BACKGROUND: Tobacco smoking is a major risk factor for plaque-induced periodontal diseases. Despite increased disease susceptibility, overt oral inflammation is suppressed in smokers, presenting a diagnostic conundrum. Bacterial-derived SCFAs can penetrate into oral tissues where they influence multiple components of immune and healing responses. Indeed, the SCFA burden has been correlated with the inflammatory condition of the gingiva. However, the influence of cigarette consumption on SCFA production is unknown. METHODS: GC/MS was employed to monitor the production of several SCFAs (propionic acid, isobutyric acid, butyric acid, and isovaleric acid) by representative anaerobic oral pathogens (Filifactor alocis 35896, Fusobacterium nucleatum 25586, Porphyromonas gingivalis 33277) that were exposed, or not, to a physiologically relevant dose of CSE (2000 ng/ml nicotine equivalents) generated from 3R4F reference cigarettes. RESULTS: The growth of all three bacterial species was unaffected by CSE. The capacity to produce SCFAs by these bacteria was highly varied. F alocis produced the highest concentration of a specific SCFA (butyrate); P gingivalis provided the most robust overall SCFA signal, while F alocis and F nucleatum did not release detectable levels of isobutyrate or isovalerate. As P gingivalis 33277 was the broadest SCFA producer, three low-passage clinical isolates (10208C, 5607, and 10512) were also examined. Compared to unconditioned microbes, reduced SCFA release was apparent in CSE-exposed low-passage clinical isolates of P gingivalis which reached significance for one of the three isolates (propionic, isobutyric, butyric, and isovaleric acids, all P < 0.05). CONCLUSIONS: There is high disparity in the SCFA profiles of variant chronic periodontitis-associated bacteria, while CSE exposure reduces SCFA production by a specific clinical strain of P gingivalis. If the latter phenomenon occurs in vivo, a reduced SCFA burden may help explain the reduced vascular response to dental plaque in tobacco smokers.


Asunto(s)
Ácidos Grasos Volátiles , Fusobacterium nucleatum , Porphyromonas gingivalis , Humo , Ácidos Grasos Volátiles/metabolismo , Fusobacterium nucleatum/metabolismo , Humanos , Enfermedades Periodontales , Fumar
9.
Nicotine Tob Res ; 21(1): 101-110, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085294

RESUMEN

Introduction: Smokeless tobacco products such as snuff and snus are used worldwide. However, little is known about the systemic and cardiovascular toxicity of smokeless tobacco exposure. Methods: Biomarkers of endothelial activation and injury, immune functions, platelet activation and insulin resistance were measured in 8-week old male C57BL/6 mice exposed to commercial snuff, CRP-2 reference snuff, commercial snus, CRP-1 reference snus, and nicotine in drinking water (100 µg/mL) for 4, 12, and 24 weeks. Results: Twenty-four weeks of exposure to smokeless tobacco products or nicotine significantly decreased the levels of circulating Flk+/Sca+ endothelial progenitor cells. Twelve and 24 weeks of exposure to all the smokeless tobacco products and nicotine significantly decreased the levels of circulating CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD11b+ monocytes, whereas 4 weeks of exposure to Camel snus and Copenhagen snuff significantly depleted the levels of peripheral blood CD19+ B cells and CD11b+ monocytes. Twenty-four weeks of exposure to smokeless tobacco products or nicotine significantly decreased plasma IFNγ levels. However, plasma TNFα levels were significantly increased in mice exposed to Copenhagen snuff or nicotine for 24 weeks. This was accompanied by a five to sevenfold increase in the hepatic expression of TNFα. Neither smokeless products nor nicotine affected plasma lipoproteins, platelet activation, or systemic insulin sensitivity. Conclusions: Chronic exposure to snuff and snus suppresses circulating levels of EPCs, endothelial microparticles and immune cells, but increases plasma TNF-α levels. These effects of smokeless tobacco products are attributable, at least in part, to nicotine. Implications: Exposure to smokeless tobacco products results in the depletion of endothelial progenitor cells, which may impair the endothelium repair. Suppression of the circulating levels of immune cells upon exposure to smokeless tobacco products may increase the susceptibility to secondary infection. Increased formation of proinflammatory cytokines such as TNFα by nicotine or Copenhagen snuff may lead to vascular inflammation and thereby exacerbate atherogenesis.


Asunto(s)
Biomarcadores/análisis , Endotelio Vascular/patología , Inmunidad Celular/efectos de los fármacos , Resistencia a la Insulina , Activación Plaquetaria/efectos de los fármacos , Trombosis/patología , Tabaco sin Humo/toxicidad , Animales , Endotelio Vascular/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Trombosis/inducido químicamente
10.
J Biol Chem ; 288(12): 8667-8678, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23378535

RESUMEN

Thrombin participates in coagulation, anticoagulation, and initiation of platelet activation. To fulfill its diverse roles and maintain hemostasis, this serine protease is regulated via the extended active site region and anion-binding exosites (ABEs) I and II. For the current project, amide proton hydrogen-deuterium exchange coupled with MALDI-TOF mass spectrometry was used to characterize ligand binding to individual exosites and to investigate the presence of exosite-active site and exosite-exosite interactions. PAR3(44-56) and PAR1(49-62) were observed to bind to thrombin ABE I and then to exhibit long range effects over to ABE II. By contrast, Hirudin(54-65) focused more on ABE I and did not transmit influences over to ABE II. Although these three ligands were each directed to ABE I, they did not promote the same conformational consequences. D-Phe-Pro-Arg-chloromethyl ketone inhibition at the thrombin active site led to further local and long range consequences to thrombin-ABE I ligand complexes with the autolysis loop often most affected. When Hirudin(54-65) was bound to ABE I, it was still possible to bind GpIbα(269-286) or fibrinogen γ'(410-427) to ABE II. Each ligand exerted its predominant influences on thrombin and also allowed interexosite communication. The results obtained support the proposal that thrombin is a highly dynamic protein. The transmission of ligand-specific local and long range conformational events is proposed to help regulate this multifunctional enzyme.


Asunto(s)
Hirudinas/química , Fragmentos de Péptidos/química , Trombina/química , Clorometilcetonas de Aminoácidos/química , Animales , Aniones/química , Sitios de Unión , Dominio Catalítico , Bovinos , Medición de Intercambio de Deuterio , Fibrinógeno/química , Ligandos , Glicoproteínas de Membrana/química , Modelos Moleculares , Complejo GPIb-IX de Glicoproteína Plaquetaria , Unión Proteica , Receptores de Trombina/química
11.
Anal Biochem ; 457: 74-84, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24751466

RESUMEN

Activated factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetic assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting only the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, Staphylococcus aureus fibronectin binding protein A, and thrombin-activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character, and the P-2 and P-3 substrate positions are sensitive to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase.


Asunto(s)
Factor XIIIa/química , Glutamina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Reproducibilidad de los Resultados , Especificidad por Sustrato
12.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38291899

RESUMEN

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Plásticos , Animales , Ratones , Plásticos/metabolismo , Plásticos/farmacología , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacología , Ratones Endogámicos C57BL , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Aumento de Peso
13.
Toxicol Sci ; 185(1): 64-76, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34718823

RESUMEN

Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals, and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, and 6 weeks) or high-efficiency particulate absorbing-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone, and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5- to 2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Benceno/toxicidad , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Remodelación Ventricular/fisiología
14.
Front Physiol ; 10: 1315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695624

RESUMEN

Acetaldehyde (AA) is a small, ubiquitous compound present in foods, beverages, as a gas phase combustion product, and also endogenously generated from metabolism as from ethanol (EtOH). Acetate is a short chain fatty acid derived from AA oxidation, and acetate levels were significantly higher in urine collected overnight with food provided ad libitum compared with urine collected after 9 h fasting. Feeding increases gastrointestinal blood flow, and thus, we explored the direct effects of AA (and acetate) in isolated murine superior mesenteric artery (SMA). Over the concentration range of 1-100 mM, AA strongly, and reversibly relaxed agonist-induced contractions of SMA including phenylephrine (PE), thromboxane A2 analog (U46,619) and high potassium (High K+) without toxicity. The sensitivity (EC50) but not the efficacy (>90% relaxation of PE-precontraction) of AA-induced relaxations was dependent on blood vessel (SMA was 3× more sensitive than aorta) and contractile agonist (PE EC50 = 3.3 ± 0.4 mM; U46,619 EC50 = 14.9 ± 1.5 mM; and High K+ EC50 = 17.7 ± 0.5 mM) yet independent of circadian cycle and sex. The most sensitive component of the AA-induced relaxation was inhibited significantly by: (1) a mechanically impaired endothelium; (2) nitric oxide synthase (NOS) inhibitor (L-NAME); and (3) a guanylyl cyclase (GC) inhibitor (ODQ). Both acetate and EtOH stimulated much weaker relaxations in SMA than did AA, yet these relaxations were significantly inhibited by L-NAME as well. Neither EtOH nor acetate relaxed pre-contracted aorta. Although neither cyanamide, a non-specific aldehyde dehydrogenase (ALDH) enzyme inhibitor, nor Alda-1, a specific activator of ALDH2 activity, had any effect on either sensitivity or efficacy of AA-induced relaxation in SMA, cyanamide significantly blocked both EtOH- and acetate-induced relaxations in SMA implicating a role of ALDH activity in vasorelaxation. These data show that AA relaxes SMA via an endothelium- and NO-dependent mechanism indicating that AA may be one component of the complex post-prandial hyperemia reflex via vasodilatation of mesenteric vasculature.

15.
PLoS One ; 14(12): e0226744, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891598

RESUMEN

BACKGROUND: The popularity of electronic cigarettes (E-cigarettes) has risen considerably. Several studies have suggested that nicotine may affect insulin resistance, however, the impact of E-cigarette exposure on insulin resistance, an early measure of cardiometabolic risk, is not known. METHODS AND RESULTS: Using experimental animals and human data obtained from 3,989 participants of the United States National Health and Nutrition Examination Survey (NHANES), respectively, we assessed the association between E-cigarette and conventional cigarette exposures and insulin resistance, as modelled using the homeostatic model assessment of insulin resistance (HOMA-IR) and glucose tolerance tests (GTT). C57BL6/J mice (on standard chow diet) exposed to E-cigarette aerosol or mainstream cigarette smoke (MCS) for 12 weeks showed HOMA-IR and GTT levels comparable with filtered air-exposed controls. In the NHANES cohort, there was no significant association between defined tobacco product use categories (non-users; sole E-cigarette users; cigarette smokers and dual users) and insulin resistance. Compared with non-users of e-cigarettes/conventional cigarettes, sole E-cigarette users showed no significant difference in HOMA-IR or GTT levels following adjustment for age, sex, race, physical activity, alcohol use and BMI. CONCLUSION: E-cigarettes do not appear to be linked with insulin resistance. Our findings may inform future studies assessing potential cardiometabolic harms associated with E-cigarette use.


Asunto(s)
Resistencia a la Insulina , Fumar/efectos adversos , Vapeo/efectos adversos , Adolescente , Adulto , Anciano , Animales , Estudios de Cohortes , Estudios Transversales , Femenino , Prueba de Tolerancia a la Glucosa/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Encuestas y Cuestionarios , Estados Unidos , Adulto Joven
16.
JCI Insight ; 2(9)2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28469073

RESUMEN

Mechanisms of atherogenesis have been studied extensively in genetically engineered mice with disturbed cholesterol metabolism such as those lacking either the LDL receptor (Ldlr) or apolipoprotein E (apoe). Few other animal models of atherosclerosis are available. WT rabbits or rats, even on high-fat or high-cholesterol diets, develop sparse atherosclerotic lesions. We examined the effects of Ldlr deletion on lipoprotein metabolism and atherosclerotic lesion formation in Sprague-Dawley rats. Deletion of Ldlr resulted in the loss of the LDLR protein and caused a significant increase in plasma total cholesterol and triglycerides. On normal chow, Ldlr-KO rats gained more weight and were more glucose intolerant than WT rats. Plasma proprotein convertase subtilisin kexin 9 (PCSK9) and leptin levels were higher and adiponectin levels were lower in KO than WT rats. On the Western diet, the KO rats displayed exaggerated obesity and age-dependent increases in glucose intolerance. No appreciable aortic lesions were observed in KO rats fed normal chow for 64 weeks or Western diet for 16 weeks; however, after 34-52 weeks of Western diet, the KO rats developed exuberant atherosclerotic lesions in the aortic arch and throughout the abdominal aorta. The Ldlr-KO rat may be a useful model for studying obesity, insulin resistance, and early-stage atherosclerosis.

17.
Toxicol Sci ; 158(2): 263-274, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482051

RESUMEN

Exposure to tobacco smoke, which contains several harmful and potentially harmful constituents such as acrolein increases cardiovascular disease (CVD) risk. Although high acrolein levels induce pervasive cardiovascular injury, the effects of low-level exposure remain unknown and sensitive biomarkers of acrolein toxicity have not been identified. Identification of such biomarkers is essential to assess the toxicity of acrolein present at low levels in the ambient air or in new tobacco products such as e-cigarettes. Hence, we examined the systemic effects of chronic (12 weeks) acrolein exposure at concentrations similar to those found in tobacco smoke (0.5 or 1 ppm). Acrolein exposure in mice led to a 2- to 3-fold increase in its urinary metabolite 3-hydroxypropyl mercapturic acid (3-HPMA) with an attendant increase in pulmonary levels of the acrolein-metabolizing enzymes, glutathione S-transferase P and aldose reductase, as well as several Nrf2-regulated antioxidant proteins. Markers of pulmonary endoplasmic reticulum stress and inflammation were unchanged. Exposure to acrolein suppressed circulating levels of endothelial progenitor cells (EPCs) and specific leukocyte subsets (eg, GR-1+ cells, CD19+ B-cells, CD4+ T-cells; CD11b+ monocytes) whilst other subsets (eg, CD8+ cells, NK1.1+ cells, Ly6C+ monocytes) were unchanged. Chronic acrolein exposure did not affect systemic glucose tolerance, platelet-leukocyte aggregates or microparticles in blood. These findings suggest that circulating levels of EPCs and specific leukocyte populations are sensitive biomarkers of inhaled acrolein injury and that low-level (<0.5 ppm) acrolein exposure (eg, in secondhand smoke, vehicle exhaust, e-cigarettes) could increase CVD risk by diminishing endothelium repair or by suppressing immune cells or both.


Asunto(s)
Acroleína/administración & dosificación , Biomarcadores/metabolismo , Exposición por Inhalación , Nicotiana/química , Acroleína/metabolismo , Acroleína/toxicidad , Acroleína/orina , Animales , Estrés del Retículo Endoplásmico , Células Endoteliales/metabolismo , Resistencia a la Insulina , Leucocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Humo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA