Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Faraday Discuss ; 210(0): 41-54, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29974104

RESUMEN

Biomimetic ion channels can be made to display the high sensitivity of natural protein nanopores and to develop new properties as a function of the material used. How to design the best future biomimetic channels? The main challenges are to control their sensitivity, as well as their syntheses, chemical modifications, insertion and lifetime in a lipid membrane. To address these challenges, we have recently designed short cyclodextrin nanotubes characterized by mass spectrometry and high-resolution transmission electron microscopy. They form non-permanent ion channels in lipid bilayers. Here we show how to improve the nanotube insertion in order to limit multiple insertions, how to stabilize biomimetic channels into the membrane, and how to understand the ion dynamics in confined medium scale.

2.
Nano Lett ; 15(11): 7748-54, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26471761

RESUMEN

Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered.


Asunto(s)
Biomimética , Membrana Dobles de Lípidos/química , Nanotecnología , Nanotubos/química , Ciclodextrinas/química , Canales Iónicos/química , Polímeros/química
3.
Nanoscale ; 10(32): 15303-15316, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30069556

RESUMEN

Biomimetic ion channels with different materials have been extensively designed to study the dynamics in a confined medium. These channels allow the development of several applications, such as ultra-fast sequencing and biomarker detection. When considering their synthesis, the use of cheap, non-cytotoxic and readily available materials is an increasing priority. Cyclodextrins, in supramolecular architectures, are widely utilized for pharmaceutical and biotechnological applications. Recent work has shown that short nanotubes (NTs) based on alpha-cyclodextrin (α-CD) assemble transient ion channels into membranes without cytotoxicity. In this study, we probe the influence of new cyclodextrin NT structural parameters and chemical modifications on channel formation, stability and electrical conductance. We report the successful synthesis of ß- and γ-cyclodextrin nanotubes (ß-CDNTs and γ-CDNTs), as evidenced by mass-spectrometry and high-resolution transmission electron microscopy. CDNTs were characterized by their length, diameter and number of CDs. Two hydrophobic groups, silylated or vinylated, were attached along the γ-CDNTs, improving the insertion time into the membrane. All NTs synthesized form spontaneous biomimetic ion channels. The hydrophobic NTs exhibit higher stability in membranes. Electrophysiological measurements show that ion transport is the main contribution of NT conductance and that the ion energy penalty for the entry into these NTs is similar to that of biological channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA