Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233192

RESUMEN

As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.

2.
Int J Food Sci Nutr ; 73(3): 327-335, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34605730

RESUMEN

Wheat consumption can represent one of the nutritional factors involved in the onset of diabetes. We specifically investigated the potential diabetogenic effects of Hammurabi, a T. monococcum wheat cultivar, in non-obese diabetic (NOD) mice and analysed the levels of resistant starch in pasta manufactured with Hammurabi after in vitro gastroduodenal digestion. NOD mice were fed with Hammurabi, bread wheat or rice flour to evaluate diabetes incidence and insulitis score. An enzymatic method was applied to compare the content of resistant starch in Hammurabi pasta and durum wheat pasta (control). In NOD mice, the Hammurabi-based diet significantly delayed diabetes onset (p = 0.0042) and reduced insulitis score compared to rice or wheat-based diet. Furthermore, the resistant starch value following in vitro digestion of Hammurabi pasta was significantly higher (4.08%) than that of durum wheat pasta (2.28%). Taken together, these results highlighted the potential positive effects of the Hammurabi-based diet on diabetes incidence.


Asunto(s)
Diabetes Mellitus Experimental , Triticum , Animales , Digestión , Harina/análisis , Incidencia , Ratones , Ratones Endogámicos NOD , Almidón Resistente , Almidón
3.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162980

RESUMEN

Protein expression from the berry skin of four red grape biotypes with varying hybrid character was compared at a proteome-wide level to identify the metabolic pathways underlying divergent patterns of secondary metabolites. A bottom-up shotgun proteomics approach with label-free quantification and MaxQuant-assisted computational analysis was applied. Red grapes were from (i) purebred Vitis vinifera (Aglianico cv.); (ii) V. vinifera (local Sciascinoso cv.) grafted onto an American rootstock; (iii) interspecific hybrid (V. vinifera × V. labrusca, Isabel), and (iv) uncharacterized grape genotype with hybrid lineage, producing relatively abundant anthocyanidin 3,5-O-diglucosides. Proteomics supported the differences between hybrids and purebred V. vinifera grapes, consistently with distinct phenotypic metabolite assets. Methanol O-anthraniloyltransferase, which catalyses the synthesis of methyl anthranilate, primarily responsible for the "foxy" odour, was exclusive of the Isabel hybrid grape. Most of the proteins with different expression profiles converged into coordinated biosynthetic networks of primary metabolism, while many possible enzymes of secondary metabolism pathways, including 5-glucosyltransferases expected for hybrid grapes, remained unassigned due to incomplete protein annotation for the Vitis genus. Minor differences of protein expression distinguished V. vinifera scion grafted onto American rootstocks from purebred V. vinifera skin grapes, supporting a slight influence of the rootstock on the grape metabolism.


Asunto(s)
Vitis , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Odorantes/análisis , Proteómica , Vitis/metabolismo
4.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565988

RESUMEN

Selected food proteins may represent suitable markers for assessing either the presence/absence of specific food ingredients or the type and intensity of food processes. A fundamental step in the quantification of any protein marker is choosing a proper protocol for solubilizing the protein of interest. This step is particularly critical in the case of solid foods and when the protein analyte is prone to undergo intermolecular disulfide exchange reactions with itself or with other protein components in the system as a consequence of process-induced unfolding. In this frame, gluten-based systems represent matrices where a protein network is present and the biomarker proteins may be either linked to other components of the network or trapped into the network itself. The protein biomarkers considered here were wheat gluten toxic sequences for coeliac (QQPFP, R5), wheat germ agglutinin (WGA), and chicken egg ovalbumin (OVA). These proteins were considered here in the frame of three different cases dealing with processes different in nature and severity. Results from individual cases are commented as for: (1) the molecular basis of the observed behavior of the protein; (2) the design of procedure aimed at improving the recovery of the protein biomarker in a form suitable for reliable identification and quantification; (3) a critical analysis of the difficulties associated with the plain transfer of an analytical protocol from one product/process to another. Proper respect for the indications provided by the studies exemplified in this study may prevent coarse errors in assays and vane attempts at estimating the efficacy of a given treatment under a given set of conditions. The cases presented here also indicate that recovery of a protein analyte often does not depend in a linear fashion on the intensity of the applied treatment, so that caution must be exerted when attributing predictive value to the results of a particular study.


Asunto(s)
Manipulación de Alimentos , Glútenes , Biomarcadores/análisis
5.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209097

RESUMEN

Tritordeum results from the crossbreeding of a wild barley (Hordeum chilense) species with durum wheat (Triticum turgidum spp. turgidum). This hexaploid crop exhibits agronomic and rheological characteristics like soft wheat, resulting in an innovative raw material to produce baked goods. We applied a gel-based proteomic approach on refined flours to evaluate protein expression differences among two widespread tritordeum cultivars (Aucan and Bulel) taking as the reference semolina and flour derived from a durum and a soft wheat cvs, respectively. The products of in vitro digestion of model breads were analyzed to compare bio-accessibility of nutrients and mapping tritordeum bread resistant peptides. Significant differences among the protein profiles of the four flours were highlighted by electrophoresis. The amino acid bio-accessibility and the reducing sugars of tritordeum and wheat breads were comparable. Tritordeum cvs had about 15% higher alpha-amino nitrogen released at the end of the duodenal simulated digestion than soft wheat (p < 0.05). Bulel tritordeum flour, bread and digested bread had about 55% less R5-epitopes compared to the soft wheat. Differences in protein expression found between the two tritordeum cvs reflected in diverse digestion products and allergenic and celiacogenic potential of the duodenal peptides. Proteomic studies of a larger number of tritordeum cvs may be successful in selecting those with good agronomical performances and nutritional advantages.


Asunto(s)
Pan/análisis , Grano Comestible/química , Análisis de los Alimentos , Triticum/química , Cromatografía Liquida , Digestión , Péptidos/análisis , Proteínas de Vegetales Comestibles/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem
6.
J Proteome Res ; 17(7): 2412-2420, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29851351

RESUMEN

A long-term psychiatric 40 years-old male patient was found dead at 9:00 a.m. in the clinic where he lived. Death was caused by traumatic injuries, which the sanitary staff imputed to a fall. Nurses declared that the patient refused having breakfast, whereas at autopsy the stomach contained 350 g of whitish semifluid material. Using both shotgun and gel-based proteomics, we demonstrated that the chyme contained partly digested milk- and bread-derived proteins, eaten during a recent breakfast. The conflict between evidence and assertions of the attending sanitary staff prompted the Legal Authority to undertake detailed investigations to ascertain facts and possible responsibilities. The herein characterization provides insights in the in vivo mechanisms of gastric breakdown of food proteins in a real meal. ß-lactoglobulin was partially resistant to gastric digestion as confirmed by Western blot analysis, in contrast to caseins and wheat gluten proteins, which had been degraded by gastric fluids. In addition to a complex pattern of gastric proteins (e.g., mucin-5AC, pepsin A-3, pepsinogen C, gastric lipase, gastrokine-2, trefoil factors), chyme contained intact proteins and variably sized food-derived polypeptides arising from peptic and nonpeptic proteolytic cleavage as well as heterodimeric disulfide-cross-linked peptides. These findings suggest that the current analytical workflows offer only a partial picture of the real complexity of the human "digestome".


Asunto(s)
Autopsia/métodos , Ciencias Forenses/métodos , Contenido Digestivo/química , Proteómica/métodos , Adulto , Caseínas/metabolismo , Digestión , Glútenes/metabolismo , Humanos , Masculino , Proteínas de la Leche/metabolismo , Proteolisis
7.
Appetite ; 125: 172-181, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29427691

RESUMEN

Dietary fiber and whole grain foods may contribute to the regulation of appetite; however, evidence has produced inconclusive findings. The objective was to evaluate the effects of an experimental wholemeal pasta on appetite ratings, plasma concentrations of gastrointestinal hormones involved in appetite control, and postprandial glucose/insulin responses in healthy adults. Fourteen healthy adults (7M/7F), mean age 30±2 yrs (mean±SEM), participated in a randomized, controlled, crossover trial. Participants consumed on two different days, at one week interval, 117g of wholemeal pasta or 100g of refined wheat pasta (control pasta), similar in energy and macronutrient composition except for fiber amount, which was higher in wholemeal pasta (11 vs 3 g). Appetite ratings, glucose/insulin/lipid and gastrointestinal hormone responses were measured at fasting and for 4-h after the ingestion of the pasta tests, after which self-reported energy intake for 8-h was evaluated. After the wholemeal pasta, the desire to eat and the sensation of hunger were lower (-16%, p=0.04 and -23%, p=0.004, respectively) and satiety was higher (+13%; p=0.08) compared with the control pasta; no effect on self-reported energy intake at subsequent meal was observed. After wholemeal pasta, glucose, triglyceride increased and GLP-1 responses were not different compared to control pasta but insulin response at 30 min (p<0.05) and ghrelin at 60 min (p=0.03) were lower and PYY levels higher (AUC=+44%, p=0.001). The appetite rating changes correlated with PYY plasma levels (p<0.03). In conclusion, consumption of whole grain instead of refined wheat pasta contributed to appetite control but did not seem to influence acute energy balance. Appetite ratings were associated with modifications in PYY hormone concentrations.


Asunto(s)
Apetito/efectos de los fármacos , Fibras de la Dieta/farmacología , Péptido YY/sangre , Periodo Posprandial , Respuesta de Saciedad/efectos de los fármacos , Triticum , Granos Enteros , Adulto , Regulación del Apetito/efectos de los fármacos , Glucemia/metabolismo , Estudios Cruzados , Ingestión de Energía/efectos de los fármacos , Femenino , Ghrelina/sangre , Péptido 1 Similar al Glucagón/sangre , Humanos , Hambre/efectos de los fármacos , Insulina/sangre , Masculino , Comidas , Autoinforme , Triglicéridos/sangre
8.
Int J Food Sci Nutr ; 69(8): 954-962, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29495907

RESUMEN

Triticum monococcum L. is one of the oldest ancestors of wheat. There is some evidence that einkorn encloses forms of gliadin-deriving peptides which may potentially exert a reduced toxicity to consumers with gluten-related disorders. Accordingly, ID331 and Monlis lines were comparatively investigated in this study. The biological effects of gastro-resistant peptides deriving from an in vitro simulated digestion were evaluated on 21 d differentiated Caco-2 cells. Triticum aestivum digested gliadin was included as the positive control. ID331 neither enhanced cell permeability nor induced zonulin release in Caco-2 monolayers. Monlis exerted a detectable toxicity as confirmed by the reorganisation of enterocyte cytoskeleton, in addition to changes both in monolayers permeability and apical release of zonulin. Differences in patterns of gastro-resistant prolamins may account for the differences. Outcomes support the use of ID331 as a prospective candidate for the development of innovative approaches to reduce wheat flour toxicity.


Asunto(s)
Gliadina/toxicidad , Triticum/química , Triticum/clasificación , Actinas/metabolismo , Células CACO-2 , Enfermedad Celíaca/prevención & control , Supervivencia Celular/efectos de los fármacos , Toxina del Cólera/metabolismo , Harina , Glútenes/inmunología , Haptoglobinas , Humanos , Permeabilidad , Precursores de Proteínas , Triticum/toxicidad
9.
Pediatr Allergy Immunol ; 28(3): 230-237, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27992668

RESUMEN

BACKGROUND: Extensively hydrolyzed casein formula (EHCF) has been proposed for the prevention and is commonly used for the treatment of cow's milk allergy (CMA). The addition of the probiotic Lactobacillus rhamnosus GG (LGG) to EHCF may induce faster acquisition of tolerance to cow's milk. The mechanisms underlying this effect are largely unexplored. We investigated the effects of EHCF alone or in combination with LGG on ß-lactoglobulin (BLG) sensitization in mice. METHODS: Three-week-old C3H/HeOuJ mice were sensitized by oral administration of BLG using cholera toxin as adjuvant at weekly intervals for 5 weeks (sensitization period). Two experimental phases were conducted: (i) EHCF or EHCF+LGG given daily, starting 2 weeks before the sensitization period and then given daily for 5 weeks and (ii) EHCF or EHCF+LGG given daily for 4 weeks, starting 1 week after the sensitization period. Diet free of cow's milk protein was used as control. Acute allergic skin response, anaphylactic symptom score, body temperature, intestinal permeability, anti-BLG serum IgE, and interleukin (IL)-4, IL-5, IL-10, IL-13, IFN-γ mRNA expression were analyzed. Peptide fractions of EHCF were characterized by reversed-phase (RP)-HPLC, MALDI-TOF mass spectrometry, and nano-HPLC/ESI-MS/MS. RESULTS: Extensively hydrolyzed casein formula administration before or after BLG-induced sensitization significantly reduced acute allergic skin reaction, anaphylactic symptom score, body temperature decrease, intestinal permeability increase, IL-4, IL-5, IL-13, and anti-BLG IgE production. EHCF increased expression of IFN-γ and IL-10. Many of these effects were significantly enhanced by LGG supplementation. The peptide panels were similar between the two study formulas and contained sequences that could have immunoregulatory activities. CONCLUSIONS: The data support dietary intervention with EHCF for CMA prevention and treatment through a favorable immunomodulatory action. The observed effects are significantly enhanced by LGG supplementation.


Asunto(s)
Caseínas/administración & dosificación , Lacticaseibacillus rhamnosus/inmunología , Lactoglobulinas/inmunología , Hipersensibilidad a la Leche/terapia , Probióticos/uso terapéutico , Animales , Caseínas/inmunología , Bovinos , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Inmunoglobulina E/sangre , Ratones , Ratones Endogámicos C3H , Leche , Hipersensibilidad a la Leche/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem
10.
Biochem Biophys Res Commun ; 450(1): 488-93, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24911556

RESUMEN

A tryptic fragment (b5TR,NR), encompassing residues 2515-2750, was isolated from a low-iodine (0.26% by mass) bovine thyroglobulin, by limited proteolysis with trypsin and preparative, continuous-elution SDS-PAGE. The fragment was digested with Asp-N endoproteinase and analyzed by reverse-phase HPLC electrospray ionization quadrupole time-of-flight mass spectrometry, revealing the formation of: 3-monoiodotyrosine and dehydroalanine from Tyr2522; 3-monoiodotyrosine from Tyr2555 and Tyr2569; 3-monoiodotyrosine and 3,5-diiodotyrosine from Tyr2748. The data presented document, by direct mass spectrometric identifications, efficient iodophenoxyl ring transfer from monoiodinated hormonogenic donor Tyr2522 and efficient mono- and diiodination of hormonogenic acceptor Tyr2748, under conditions which permitted only limited iodination of Tyr2555 and Tyr2569, in low-iodine bovine thyroglobulin. The present study thereby provides: (1) a rationale for the preferential synthesis of T3 at the carboxy-terminal end of thyroglobulin, at low iodination level; (2) confirmation for the presence of an interspecifically conserved hormonogenic donor site in the carboxy-terminal domain of thyroglobulin; (3) solution for a previous uncertainty, concerning the precise location of such donor site in bovine thyroglobulin.


Asunto(s)
Bovinos/metabolismo , Yodo/metabolismo , Tiroglobulina/química , Tiroglobulina/metabolismo , Triyodotironina/biosíntesis , Tirosina/química , Tirosina/metabolismo , Animales , Sitios de Unión , Yodo/química , Relación Estructura-Actividad , Tiroglobulina/aislamiento & purificación , Triyodotironina/química
11.
Foods ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38472773

RESUMEN

Tritordeum is an amphiploides species resulting from the hybridization between durum wheat (T. durum) and wild barley (H. chilense). This new cereal is considered a natural crop as it is obtained by traditional breeding techniques. Given its appreciable organoleptic characteristics, agronomic features, presence of interesting components, and good technological properties, Tritordeum is of promising interest for the development of health-oriented foods. In this study, we evaluated two registered Tritordeum cultivars, Bulel and Aucan. T. durum (Provenzal) was employed as the positive control. The extracted proteins were digested by gastric/pancreatic proteases, and their biological effects on Caco-2 differentiated on transwell inserts were determined. Changes in cell viability, monolayer permeability, organization of F-actin microfilaments, and ER stress triggered by protein-digested samples (DPs) were inspected. Our results showed that exposure to Provenzal-DPs promptly disrupted the tight junction barrier. Conversely, Aucan-DPs did not enhance monolayer permeability, whereas Bulel-DPs exerted only slight effects. Provental-DPs-induced toxicity was also confirmed by changes in cell viability and by the deep reorganization of the enterocyte cytoskeleton. In contrast, Aucan-DPs and Bulel-DPs did not affect monolayer viability and cytoskeleton structure. Overall, our findings suggest that both Tritordeum cultivars could be potential candidates for mitigating the toxicity of wheat flour.

12.
Foods ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611351

RESUMEN

The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.

13.
Food Res Int ; 164: 112326, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737918

RESUMEN

Despite the physiological importance of the hydrolases from the intestinal brush border membrane (BBM), a step simulating the intestinal digestion has not been included yet in the harmonized protocols of in vitro digestion, due to commercial unavailability of these enzymes and lack of consensus for the conditions of use. The proper utilize of BBM requires a detailed investigation of their enzymatic composition. BBM vesicles were purified from specimens of pig jejunum optimizing previously described methods and assayed for aminopeptidase N and dipeptidyl peptidase IV activity. Large-scale proteomics was carried out with a bottom-up shotgun approach, also performing a rough quantification with the iBAQ (intensity Based Absolute Quantification). Overall, 1428 proteins were identified and functionally classified by gene ontology enrichment analysis. The predominant enzyme fraction (220 gene products) was represented by hydrolases, including peptidases, glycosidases, and lipases. Aminopeptidase N and sucrase-isomaltase represented 52.9 % and 50.2 % of the peptidase and glycosidase abundance, respectively. In addition to expected transporters and cytoskeletal actin-binding proteins, purified BBM vesicles also contains a complex array of protease inhibitors, here described for the first time, that may modulate the activity of hydrolases. Considering the similarity with the human counterpart, intestinal porcine BBM are suited for simulating the human small intestinal digestion.


Asunto(s)
Antígenos CD13 , Yeyuno , Humanos , Animales , Porcinos , Yeyuno/metabolismo , Microvellosidades/metabolismo , Antígenos CD13/metabolismo , Aminopeptidasas/análisis , Aminopeptidasas/metabolismo , Proteómica , Péptido Hidrolasas/metabolismo , Digestión
14.
Food Res Int ; 170: 112962, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316051

RESUMEN

Carob (Ceratonia siliqua L.) seed germ flour (SGF) is a by-product resulting from the extractionextraction of locust bean gum (E410), which is a texturing and thickening ingredient used for food, pharmaceutical and cosmetic preparations. SGF is a protein-rich edible matrix and contains relatively high amounts of apigenin 6,8-C-di- and poly-glycosylated derivatives. In this work, we prepared durum wheat pasta containing 5 and 10 % (w/w) of SGF and carried out inhibition assays against type-2 diabetes relevant carbohydrate hydrolysing enzymes, namely porcine pancreatic α-amylase and α-glycosidases from jejunal brush border membranes. Nearly 70-80% of the SGF flavonoids were retained in the pasta after cooking in boiling water. Extracts from cooked pasta fortified with 5 or 10% SGF inhibited either α-amylase by 53% and 74% or α-glycosidases by 62 and 69%, respectively. The release of reducing sugars from starch was delayed in SGF-containing pasta compared to the full-wheat counterpart, as assessed by simulated oral-gastric-duodenal digestion. By effect of starch degradation, the SGF flavonoids were discharged in the water phase of the chyme, supporting a possible inhibitory activity against both duodenal α-amylase and small intestinal α-glycosidases in vivo. SGF is a promising functional ingredient obtained from an industrial by-product for producing cereal-based foods with reduced glycaemic index.


Asunto(s)
Harina , Triticum , Porcinos , Animales , Glicósidos , Semillas , Glicósido Hidrolasas , Flavonoides , Almidón
15.
Food Chem ; 401: 134185, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113218

RESUMEN

Alternative sources of edible proteins are required to feed the world's growing population, such as Moringa oleifera leaves, a protein source with a balanced amino acid composition. Since Moringa leaf proteins is a novel food in the EU and UK, an assessment of their potential allergenicity of is required. Proteins from Moringa leaf powder were characterised using traditional proteomic approaches. The proteins identified were evaluated for their allergenic potential using in-silico tools. The main proteins identified belonged to photosynthetic and metabolic pathways. In-silico analysis of the leaf proteome identified moritides as potential allergens by homology with a latex allergen implicated in fruit-latex syndrome. This analysis also identified a nsLTP, a major panallergen in food. The presence of these putative allergens was confirmed by de-novo sequencing. Our study allowed identification of putative allergens, Morintides and nsLTP. Further in-vitro and in-vivo investigations are required to confirm their allergenic potential.


Asunto(s)
Ingredientes Alimentarios , Moringa oleifera , Alérgenos/química , Moringa oleifera/química , Proteómica , Proteoma/metabolismo , Polvos/metabolismo , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Aminoácidos/metabolismo
16.
Plant Foods Hum Nutr ; 67(1): 24, 30, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22298027

RESUMEN

Maize is used as an alternative to wheat to elaborate food stuffs for celiac patients in a gluten-free diet.However, some maize prolamins (zeins) contain amino acid sequences that resemble the wheat gluten immunodominant peptides and their integrity after gastrointestinal proteolysisis unknown. In this study, the celiac IgA-immunoreactivity to zeins from raw or nixtamalized grains, before and after peptic/tryptic digestion was evaluated and their possible immunogenicity was investigated by in silico methods.IgA from some celiac patients with HLA-DQ2 or DQ8 haplotypes recognized two alpha-zeins even after peptic/ tryptic proteolysis. However, digestion affected zeins after denaturation, reduction, and alkylation, used for identification of prolamins as alpha-zein A20 and A30 by MS/MS sequencing. An in silico analysis indicated that other zeins contain similar sequences, or sequences that may bind even better to the HLA-DQ2/DQ8 molecules compared to the already identified ones. Results concur to indicate that relative abundance of these zeins, along with factors affecting their resistance to proteolysis, may be of paramount clinical relevance, and the use of maize in the formulation and preparation of gluten-free foods must be reevaluated in some cases of celiac disease.


Asunto(s)
Enfermedad Celíaca/inmunología , Inmunoglobulina A/inmunología , Prolaminas/inmunología , Zea mays/química , Adolescente , Adulto , Secuencia de Aminoácidos , Enfermedad Celíaca/dietoterapia , Niño , Dieta Sin Gluten , Antígenos HLA-DQ/inmunología , Haplotipos , Humanos , Persona de Mediana Edad , Datos de Secuencia Molecular , Prolaminas/química , Triticum/química , Triticum/inmunología , Zea mays/inmunología , Zeína/química , Zeína/inmunología
17.
Front Nutr ; 9: 1049623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741992

RESUMEN

Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.

18.
Front Nutr ; 9: 974771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159465

RESUMEN

Gluten degrading enzymes, which are commonly referred to as "glutenases," represent attractive candidates for the development of a pharmacological treatment of gluten related disorders, such as coeliac disease (CeD). Endoprotease-40 (E40), a novel glutenase secreted by the actinomycete Actinoallomurus A8 and recombinantly produced in S. lividans TK24, was shown to be active at pH 3 to 6 (optimum pH 5), resistant to pepsin and trypsin degradation, able to destroy immunotoxicity of both gliadin 33-mer peptide and whole proteins and to strongly reduce the response of specific T cells when added to gliadin in in vitro gastrointestinal digestion. This study aims to functionally assess the capabilities of Endoprotease-40 (E40) to detoxify residual gluten immunogenic peptides in gastrointestinal digesta of food matrices made of soft and durum wheat. The INFOGEST harmonized protocols were applied to the multicompartmental model of simulated human gastrointestinal digestion, for the quantitative assessment of residual gluten in liquid (beer) and solid (bread and pasta) foods, made of either soft or durum wheat. Proteomic and immunological techniques, and functional assays on intestinal T cell lines from celiac disease patients were used to identify gluten-derived immunogenic peptide sequences surviving in gastric and gastrointestinal digesta after the addition of E40 at increasing enzyme: wheat proteins ratios. During the gastric phase (2 h incubation time), the addition of E40 demonstrated an extensive (≥ 95%) dose-dependent detoxification of whole gluten in real food matrices. Overall, the residual gluten content was found at, or even below, the 20 ppm gluten-free threshold for soft and durum wheat-based food. Furthermore, unlike in untreated gastrointestinal digesta, none of the immunodominant α-gliadin peptides survived in E40-treated digesta. Traces of ω- and γ-gliadin derived immunogenic peptides were still detected in E40-treated digesta, but unable to stimulate celiac-intestinal T cells. In conclusion, E40 is a promising candidate for the oral enzymatic therapy of CeD, as a stand-alone enzyme being efficient along the complete gastrointestinal digestion of gluten.

19.
Food Res Int ; 154: 111012, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35337570

RESUMEN

The demand for sustainably produced proteins is increasing with the world population and is prompting a dietary shift toward plant sourced proteins. Vegetable proteins have lower digestibility and biological value compared to animal derived counterparts. We explored sprouting of chickpea seeds as a strategy for improving digestibility. Protein evolution associated with by the sprouting process was assessed by proteomics. The sprouting induced breakdown of seed storage proteins and doubled the release of free alpha-amino nitrogen in sprouted chickpea flour. During sprouting, several enzymes involved in plant development were newly expressed. An ex vivo model of gastroduodenal and jejunal digestion was applied to assess the bioaccessibility of the protein digests. Proteins from chickpea sprouts showed a greater susceptibility to digestion with a 10% increase in alpha amino nitrogen. Peptides with potential immunoreactivity or bioactivity were catalogued in both digested chickpea sprouts and seeds using an in-silico approach. Peptides belonging to the non-specific transfer proteins, which are allergens in pulses, and peptides belonging to an IgE-binding hemagglutinin protein could only be identified in the digested chickpea sprouts. The observation collected paved the way to immune-based evaluations to assess the effect of germination on the allergenic potential.


Asunto(s)
Cicer , Animales , Digestión , Harina , Microvellosidades , Proteoma/metabolismo
20.
Expert Rev Proteomics ; 8(1): 95-115, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21329430

RESUMEN

Owing to its extensive use in the human diet, wheat is among the most common causes of food-related allergies and intolerances. Allergies to wheat are provoked by ingestion, inhalation or contact with either the soluble or the insoluble gluten proteins in wheat. Gluten proteins, and particularly the gliadin fraction, are also the main factor triggering celiac disease, a common enteropathy induced by ingestion of wheat gluten proteins and related prolamins from oat, rye and barley in genetically susceptible individuals. The role of gliadin and of its derived peptides in eliciting the adverse reactions in celiac disease are still far from being completely explained. Owing to its unique pathogenesis, celiac disease is widely investigated as a model immunogenetic disorder. The structural characterization of the injuring agents, the gluten proteins, assumes a particular significance in order to deepen the understanding of the events that trigger this and similar diseases at the molecular level. Recent developments in proteomics have provided an important contribution to the understanding of several basic aspects of wheat protein-related diseases. These include: the identification of gluten fractions and derived peptides involved in wheat allergy and intolerance, including celiac disease, and the elucidation of their mechanism of toxicity; the development and validation of sensitive and specific methods for detecting trace amounts of gluten proteins in gluten-free foods for intolerant patients; and the formulation of completely new substitute foods and ingredients to replace the gluten-based ones. In this article, the main aspects of current and prospective applications of mass spectrometry and proteomic technologies to the structural characterization of gluten proteins and derived peptides are critically presented, with a focus on issues related to their detection, identification and quantification, which are relevant to the biochemical, immunological and toxicological aspects of wheat intolerance.


Asunto(s)
Alérgenos/clasificación , Alérgenos/inmunología , Glútenes/análisis , Proteómica , Triticum/efectos adversos , Hipersensibilidad al Trigo/diagnóstico , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/inmunología , Gliadina/efectos adversos , Gliadina/análisis , Glútenes/efectos adversos , Humanos , Prolaminas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA