Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(14): e107294, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031912

RESUMEN

Potassium-coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho-regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo-EM structures of human KCC3b and KCC1, revealing structural determinants for phospho-regulation in both N- and C-termini. We show that phospho-mimetic KCC3b is arrested in an inward-facing state in which intracellular ion access is blocked by extensive contacts with the N-terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho-regulatory site in the KCC1 N-terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP-binding pocket in the large C-terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.


Asunto(s)
Cloruros/metabolismo , Nucleótidos/metabolismo , Potasio/metabolismo , Simportadores/metabolismo , Animales , Línea Celular , Tamaño de la Célula , Humanos , Fosforilación/fisiología , Células Sf9 , Transducción de Señal/fisiología , Cotransportadores de K Cl
2.
Nat Chem Biol ; 13(3): 275-281, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28068311

RESUMEN

The asymmetric dehydration of alcohols is an important process for the direct synthesis of alkenes. We report the structure and substrate specificity of the bifunctional linalool dehydratase isomerase (LinD) from the bacterium Castellaniella defragrans that catalyzes in nature the hydration of ß-myrcene to linalool and the subsequent isomerization to geraniol. Enzymatic kinetic resolutions of truncated and elongated aromatic and aliphatic tertiary alcohols (C5-C15) that contain a specific signature motif demonstrate the broad substrate specificity of LinD. The three-dimensional structure of LinD from Castellaniella defragrans revealed a pentamer with active sites at the protomer interfaces. Furthermore, the structure of LinD in complex with the product geraniol provides initial mechanistic insights into this bifunctional enzyme. Site-directed mutagenesis confirmed active site amino acid residues essential for its dehydration and isomerization activity. These structural and mechanistic insights facilitate the development of hydrating catalysts, enriching the toolbox for novel bond-forming biocatalysis.


Asunto(s)
Alcoholes/química , Alcoholes/metabolismo , Hidroliasas/metabolismo , Biocatálisis , Deshidratación , Estructura Molecular
3.
Chembiochem ; 16(7): 1052-9, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25809902

RESUMEN

Oxidoreductases from Streptomyces sp. GF3546 [3546-IRED], Bacillus cereus BAG3X2 (BcIRED) and Nocardiopsis halophila (NhIRED) each reduce prochiral 2-methylpyrroline (2MPN) to (S)-2-methylpyrrolidine with >95 % ee and also a number of other imine substrates with good selectivity. Structures of BcIRED and NhIRED have helped to identify conserved active site residues within this subgroup of imine reductases that have S selectivity towards 2MPN, including a tyrosine residue that has a possible role in catalysis and superimposes with an aspartate in related enzymes that display R selectivity towards the same substrate. Mutation of this tyrosine residue-Tyr169-in 3546-IRED to Phe resulted in a mutant of negligible activity. The data together provide structural evidence for the location and significance of the Tyr residue in this group of imine reductases, and permit a comparison of the active sites of enzymes that reduce 2MPN with either R or S selectivity.


Asunto(s)
Biocatálisis , Iminas/química , Iminas/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Pirrolidinas/química , Pirrolidinas/metabolismo , Dominio Catalítico , Bacterias Grampositivas/enzimología , Modelos Moleculares , Oxidación-Reducción , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
Chembiochem ; 16(6): 968-76, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25737306

RESUMEN

The FAD-dependent monooxygenase HbpA from Pseudomonas azelaica HBP1 catalyses the hydroxylation of 2-hydroxybiphenyl (2HBP) to 2,3-dihydroxybiphenyl (23DHBP). HbpA has been used extensively as a model for studying flavoprotein hydroxylases under process conditions, and has also been subjected to directed-evolution experiments that altered its catalytic properties. The structure of HbpA has been determined in its apo and FAD-complex forms to resolutions of 2.76 and 2.03 Å, respectively. Comparisons of the HbpA structure with those of homologues, in conjunction with a model of the reaction product in the active site, reveal His48 as the most likely acid/base residue to be involved in the hydroxylation mechanism. Mutation of His48 to Ala resulted in an inactive enzyme. The structures of HbpA also provide evidence that mutants achieved by directed evolution that altered activity are comparatively remote from the substrate-binding site.


Asunto(s)
Apoenzimas/química , Apoenzimas/metabolismo , Dominio Catalítico , Evolución Molecular Dirigida , Flavina-Adenina Dinucleótido/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Apoenzimas/genética , Compuestos de Bifenilo/metabolismo , Hidroxilación , Oxigenasas de Función Mixta/genética , NAD/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Pseudomonas/enzimología , Homología de Secuencia de Aminoácido
5.
Methods Mol Biol ; 2199: 95-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125646

RESUMEN

This chapter describes the step-by-step methods employed by the Structural Genomics Consortium (SGC) for screening and producing proteins in the BacMam system. This eukaryotic expression system was selected and a screening process established in 2016 to enable production of highly challenging human integral membrane proteins (IMPs), which are a significant component of our target list. Here, we discuss our recently developed platform for identifying expression and monodispersity of IMPs from 3 mL of HEK293 cells.


Asunto(s)
Expresión Génica , Vectores Genéticos/genética , Proteínas de la Membrana , Células HEK293 , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
6.
Nat Chem ; 9(10): 961-969, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28937665

RESUMEN

Reductive amination is one of the most important methods for the synthesis of chiral amines. Here we report the discovery of an NADP(H)-dependent reductive aminase from Aspergillus oryzae (AspRedAm, Uniprot code Q2TW47) that can catalyse the reductive coupling of a broad set of carbonyl compounds with a variety of primary and secondary amines with up to >98% conversion and with up to >98% enantiomeric excess. In cases where both carbonyl and amine show high reactivity, it is possible to employ a 1:1 ratio of the substrates, forming amine products with up to 94% conversion. Steady-state kinetic studies establish that the enzyme is capable of catalysing imine formation as well as reduction. Crystal structures of AspRedAm in complex with NADP(H) and also with both NADP(H) and the pharmaceutical ingredient (R)-rasagiline are reported. We also demonstrate preparative scale reductive aminations with wild-type and Q240A variant biocatalysts displaying total turnover numbers of up to 32,000 and space time yields up to 3.73 g l-1 d-1.


Asunto(s)
Aminas/metabolismo , Aminohidrolasas/metabolismo , Aspergillus oryzae/enzimología , Aminación , Aminohidrolasas/química , Aminohidrolasas/genética , Biocatálisis , Modelos Moleculares , Estructura Molecular , Mutación , Oxidación-Reducción
7.
Curr Opin Chem Biol ; 37: 19-25, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28038349

RESUMEN

Imine reductases (IREDs) have emerged as a valuable new set of biocatalysts for the asymmetric synthesis of optically active amines. The development of bioinformatics tools and searchable databases has led to the identification of a diverse range of new IRED biocatalysts that have been characterised and employed in different synthetic processes. This review describes the latest developments in the structural and mechanistic aspects of IREDs, together with synthetic applications of these enzymes, and identifies ongoing and future challenges in the field.


Asunto(s)
Iminas/metabolismo , Oxidorreductasas/metabolismo , Aminación , Biocatálisis , Oxidación-Reducción , Oxidorreductasas/química
8.
ChemCatChem ; 7(4): 579-583, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27547270

RESUMEN

Although the range of biocatalysts available for the synthesis of enantiomerically pure chiral amines continues to expand, few existing methods provide access to secondary amines. To address this shortcoming, we have over-expressed the gene for an (R)-imine reductase [(R)-IRED] from Streptomyces sp. GF3587 in Escherichia coli to create a recombinant whole-cell biocatalyst for the asymmetric reduction of prochiral imines. The (R)-IRED was screened against a panel of cyclic imines and two iminium ions and was shown to possess high catalytic activity and enantioselectivity. Preparative-scale synthesis of the alkaloid (R)-coniine (90 % yield; 99 % ee) from the imine precursor was performed on a gram-scale. A homology model of the enzyme active site, based on the structure of a closely related (R)-IRED from Streptomyces kanamyceticus, was constructed and used to identify potential amino acids as targets for mutagenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA