Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Mol Life Sci ; 79(12): 597, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36399280

RESUMEN

Cervical cancer is the fourth most frequently diagnosed and fatal gynecological cancer. 15-61% of all cases metastasize and develop chemoresistance, reducing the 5-year survival of cervical cancer patients to as low as 17%. Therefore, unraveling the mechanisms contributing to metastasis is critical in developing better-targeted therapies against it. Here, we have identified a novel mechanism where nuclear Caspase-8 directly interacts with and inhibits the activity of CDK9, thereby modulating RNAPII-mediated global transcription, including those of cell-migration- and cell-invasion-associated genes. Crucially, low Caspase-8 expression in cervical cancer patients leads to poor prognosis, higher CDK9 phosphorylation at Thr186, and increased RNAPII activity in cervical cancer cell lines and patient biopsies. Caspase-8 knock-out cells were also more resistant to the small-molecule CDK9 inhibitor BAY1251152 in both 2D- and 3D-culture conditions. Combining BAY1251152 with Cisplatin synergistically overcame chemoresistance of Caspase-8-deficient cervical cancer cells. Therefore, Caspase-8 expression could be a marker in chemoresistant cervical tumors, suggesting CDK9 inhibitor treatment for their sensitization to Cisplatin-based chemotherapy.


Asunto(s)
ARN Polimerasa II , Neoplasias del Cuello Uterino , Humanos , Femenino , ARN Polimerasa II/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Fosforilación , Caspasa 8/genética , Caspasa 8/metabolismo , Cisplatino/farmacología , Inhibidores de Proteínas Quinasas , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo
2.
Cancer Metastasis Rev ; 40(1): 303-318, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33026575

RESUMEN

Caspase-8 is an aspartate-specific cysteine protease, which is best known for its apoptotic functions. Caspase-8 is placed at central nodes of multiple signal pathways, regulating not only the cell cycle but also the invasive and metastatic cell behavior, the immune cell homeostasis and cytokine production, which are the two major components of the tumor microenvironment (TME). Ovarian cancer often has dysregulated caspase-8 expression, leading to imbalance between its apoptotic and non-apoptotic functions within the tumor and the surrounding milieu. The downregulation of caspase-8 in ovarian cancer seems to be linked to high aggressiveness with chronic inflammation, immunoediting, and immune resistance. Caspase-8 plays therefore an essential role not only in the primary tumor cells but also in the TME by regulating the immune response, B and T lymphocyte activation, and macrophage differentiation and polarization. The switch between M1 and M2 macrophages is possibly associated with changes in the caspase-8 expression. In this review, we are discussing the non-apoptotic functions of caspase-8, highlighting this protein as a modulator of the immune response and the cytokine composition in the TME. Considering the low survival rate among ovarian cancer patients, it is urgently necessary to develop new therapeutic strategies to optimize the response to the standard treatment. The TME is highly heterogenous and provides a variety of opportunities for new drug targets. Given the variety of roles of caspase-8 in the TME, we should focus on this protein in the development of new therapeutic strategies against the TME of ovarian cancer.


Asunto(s)
Caspasa 8/fisiología , Neoplasias Ováricas , Microambiente Tumoral , Femenino , Humanos , Macrófagos , Transducción de Señal
4.
BJU Int ; 111(4): 672-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22897391

RESUMEN

UNLABELLED: WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Androgen-ablation therapy (AAT) and chemotherapy are commonly used to treat incurable prostate cancer. To improve outcome, there is major on-going research to develop more effective treatments with less toxicity. Autophagy has been suggested from previous studies to play a potential role in cell survival and may be associated with resistance to chemotherapy. Autophagy is known to be upregulated by nutrient starvation or AAT in prostate cancer. However, its functional impact is not fully known. The present study describes the potential synergism between the blockade of autophagy and AAT alone or AAT combined with taxane chemotherapy. Hence, future combined treatment options are warranted to further investigate the clinical impact of autophagy suppression as a treatment strategy. OBJECTIVE: To study the cellular effects of the anti-androgen bicalutamide on autophagy and its potential impact on response to androgen-ablation therapy (AAT) alone or combined with docetaxel chemotherapy in human prostate cancer LNCaP cells. MATERIALS AND METHODS: LNCaP cells were treated with bicalutamide ± docetaxel, and cellular effects were assayed: lipidated LC3 (a microtubule-associated protein) for autophagy and its trafficking to fuse with lysosome; flow cytometry using propidium iodide or caspase 3 for cell death; and sulforhodamine B assay for cell growth. RESULTS: Bicalutamide treatment enhanced autophagy in LNCaP cells with increased level of autophagosome coupled with an altered cellular morphology reminiscent of neuroendocrine differentiation. Consistent with the literature on the interaction between androgen receptor activation and taxane chemotherapy, bicalutamide diminished docetaxel mediated cytotoxicity. Significantly, pharmacological inhibition of autophagy with 3-methyladenine significantly enhanced the efficacy cell kill mediated by AAT ± docetaxel. CONCLUSION: Autophagy associated with bicalutamide treatment in LNCaP cells may have a pro-survival effect and strategy to modulate autophagy may have a potential therapeutic value.


Asunto(s)
Anilidas/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Nitrilos/farmacología , Taxoides/farmacología , Compuestos de Tosilo/farmacología , Antagonistas de Andrógenos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/fisiología , Western Blotting , Línea Celular Tumoral/fisiología , Supervivencia Celular/efectos de los fármacos , Docetaxel , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Microscopía Confocal , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/análisis , Sensibilidad y Especificidad
5.
Cancers (Basel) ; 16(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38201534

RESUMEN

Ovarian cancer is one of the most lethal gynecological cancers worldwide, with approximately 70% of cases diagnosed in advanced stages. This late diagnosis results from the absence of early warning symptoms and is associated with an unfavorable prognosis. A standard treatment entails a combination of primary chemotherapy with platinum and taxane agents. Tumor recurrence following first-line chemotherapy with Carboplatin and Paclitaxel is detected in 80% of advanced ovarian cancer patients, with disease relapse occurring within 2 years of initial treatment. Platinum-resistant ovarian cancer is one of the biggest challenges in treating patients. Second-line treatments involve PARP or VEGF inhibitors. Identifying novel biomarkers and resistance mechanisms is critical to overcoming resistance, developing newer treatment strategies, and improving patient survival. In this study, we have determined that low Caspase-8 expression in ovarian cancer patients leads to poor prognosis. High-Grade Serous Ovarian Cancer (HGSOC) cells lacking Caspase-8 expression showed an altered composition of the RNA Polymerase II-containing transcriptional elongation complex leading to increased transcriptional activity. Caspase-8 knockout cells display increased BRD4 expression and CDK9 activity and reduced sensitivities to Carboplatin and Paclitaxel. Based on our work, we are proposing three potential therapeutic approaches to treat advanced ovarian cancer patients who exhibit low Caspase-8 expression and resistance to Carboplatin and/or Paclitaxel-combinations of (1) Carboplatin with small-molecule BRD4 inhibitors; (2) Paclitaxel with small-molecule BRD4 inhibitors, and (3) small-molecule BRD4 and CDK9 inhibitors. In addition, we are also proposing two predictive markers of chemoresistance-BRD4 and pCDK9.

6.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36428594

RESUMEN

Introduction: After primary platinum-based chemoradiation of locally advanced uterine cervical cancer, a substantial proportion of women present with persistent, recurrent or metastatic disease, indicating an unmet need for biomarker development. Methods: We evaluated the clinical records of 69 cervical cancer patients (Federation of Gynecology and Obstetrics, FIGO Stage > IB3) who were subjected to definitive CRT. Immunohistochemical scoring of caspase-8, cyclin dependent kinase 9 (CDK9) and phosphorylated (phospho-)CDK9 (threonine (Thr) 186) was performed on pretreatment samples and correlated with the histopathological and clinical endpoints, including relapse-free survival (RFS), distant metastasis-free survival (DMFS), cancer-specific survival (CSS) and overall survival (OS). Results: Lower levels of caspase-8 were more prevalent in patients with a higher T-stage (p = 0.002) and a higher FIGO stage (p = 0.003), and were significantly correlated with CDK9 expression (p = 0.018) and inversely with pCDK9 detection (p = 0.014). Increased caspase-8 levels corresponded to improved RFS (p = 0.005), DMFS (p = 0.038) and CSS (p = 0.017) in the univariate analyses. Low CDK9 expression was associated with worse RFS (p = 0.008), CSS (p = 0.015) and OS (p = 0.007), but not DMFS (p = 0.083), and remained a significant prognosticator for RFS (p = 0.003) and CSS (p = 0.009) in the multivariate analyses. Furthermore, low pCDK9 staining was significantly associated with superior RFS (p = 0.004) and DMFS (p = 0.001), and increased CSS (p = 0.022), and remained significant for these endpoints in the multivariate analyses. Conclusion: Increased caspase-8 and CDK9 levels correlate with improved disease-related outcomes in cervical cancer patients treated with CRT, whereas elevated pCDK9 levels predict worse survival in this patient population.

7.
Cancers (Basel) ; 13(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062779

RESUMEN

Cyclin Dependent Kinase 9 (CDK9) is one of the most important transcription regulatory members of the CDK family. In conjunction with its main cyclin partner-Cyclin T1, it forms the Positive Transcription Elongation Factor b (P-TEFb) whose primary function in eukaryotic cells is to mediate the positive transcription elongation of nascent mRNA strands, by phosphorylating the S2 residues of the YSPTSPS tandem repeats at the C-terminus domain (CTD) of RNA Polymerase II (RNAP II). To aid in this process, P-TEFb also simultaneously phosphorylates and inactivates a number of negative transcription regulators like 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) Sensitivity-Inducing Factor (DSIF) and Negative Elongation Factor (NELF). Significantly enhanced activity of CDK9 is observed in multiple cancer types, which is universally associated with significantly shortened Overall Survival (OS) of the patients. In these cancer types, CDK9 regulates a plethora of cellular functions including proliferation, survival, cell cycle regulation, DNA damage repair and metastasis. Due to the extremely critical role of CDK9 in cancer cells, inhibiting its functions has been the subject of intense research, resulting the development of multiple, increasingly specific small-molecule inhibitors, some of which are presently in clinical trials. The search for newer generation CDK9 inhibitors with higher specificity and lower potential toxicities and suitable combination therapies continues. In fact, the Phase I clinical trials of the latest, highly specific CDK9 inhibitor BAY1251152, against different solid tumors have shown good anti-tumor and on-target activities and pharmacokinetics, combined with manageable safety profile while the phase I and II clinical trials of another inhibitor AT-7519 have been undertaken or are undergoing. To enhance the effectiveness and target diversity and reduce potential drug-resistance, the future of CDK9 inhibition would likely involve combining CDK9 inhibitors with inhibitors like those against BRD4, SEC, MYC, MCL-1 and HSP90.

8.
Biochim Biophys Acta Rev Cancer ; 1873(2): 188357, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32147543

RESUMEN

Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.


Asunto(s)
Caspasa 8/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , Animales , Apoptosis/genética , Apoptosis/inmunología , Autofagia/genética , Autofagia/inmunología , Caspasa 8/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/genética , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Ratones , Necroptosis/genética , Necroptosis/inmunología , Neoplasias/genética , Neoplasias/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia Arriba
9.
Front Oncol ; 10: 558932, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117692

RESUMEN

Since type and duration of an appropriate adjuvant chemotherapy in early-stage ovarian cancer (OC) are still being debated, novel markers for a better stratification of these patients are of utmost importance for the design of an improved chemotherapeutical strategy. In contrast to numerous cancer studies on cellular proliferation based on the immunohistochemistry-driven evaluation of protein expression, we compared mRNA and protein expression of two independent markers of cellular proliferation, Ki-67 and Plk1, in a large cohort of 243 early-stage OC and their relationship with clinicopathological features and survival. Based on marker expression we demonstrate that early-stage OC patients (stages I/II, low-grade, serous) with high expression (Ki-67, Plk1) had a significantly shorter progression-free survival (PFS) and overall survival (OS) compared to patients with low expression (Ki-67, Plk1). Remarkably, based on mRNA expression this significant difference got lost in advanced stages (III/IV): At least for PFS, high levels of Ki-67 and Plk1 correlate with moderately better survival compared to patients with low expressing tumors. Our data suggest that in addition to Ki-67, Plk1 is a novel marker for the stratification of early-stage OC patients to maximize therapeutic efforts. Both, Ki-67 and Plk1, seem to be better suited in early-stages (I/II) as therapeutical targets compared to advanced-stages (III/IV) OC.

10.
Cancer Discov ; 8(9): 1087-1095, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29802158

RESUMEN

We used whole-genome and transcriptome sequencing to identify clinically actionable genomic alterations in young adults with pancreatic ductal adenocarcinoma (PDAC). Molecular characterization of 17 patients with PDAC enrolled in a precision oncology program revealed gene fusions amenable to pharmacologic inhibition by small-molecule tyrosine kinase inhibitors in all patients with KRAS wild-type (KRASWT) tumors (4 of 17). These alterations included recurrent NRG1 rearrangements predicted to drive PDAC development through aberrant ERBB receptor-mediated signaling, and pharmacologic ERBB inhibition resulted in clinical improvement and remission of liver metastases in 2 patients with NRG1-rearranged tumors that had proved resistant to standard treatment. Our findings demonstrate that systematic screening of KRASWT tumors for oncogenic fusion genes will substantially improve the therapeutic prospects for a sizeable fraction of patients with PDAC.Significance: Advanced PDAC is a malignancy with few treatment options that lacks molecular mechanism-based therapies. Our study uncovers recurrent gene rearrangements such as NRG1 fusions as disease-driving events in KRASwt tumors, thereby providing novel insights into oncogenic signaling and new therapeutic options in this entity. Cancer Discov; 8(9); 1087-95. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neurregulina-1/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Animales , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Masculino , Ratones , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Neoplasias Pancreáticas/genética , Medicina de Precisión , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Translocación Genética , Resultado del Tratamiento , Secuenciación Completa del Genoma/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
11.
Cell Res ; 26(8): 914-34, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27325299

RESUMEN

Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression.


Asunto(s)
Caspasa 8/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor fas/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Activación Enzimática , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Marcaje Isotópico , Células Jurkat , Ligandos , Fosforilación , Fosfotreonina/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Supresoras de Tumor
12.
Mol Oncol ; 8(2): 232-49, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24342355

RESUMEN

ERK 1/2 are found to be hyperactive in many cancers. Active ERK 1/2 (pERK 1/2) are known to protect cancer cells from undergoing death receptor-mediated apoptosis, although the mechanism(s) behind this is poorly understood. Through in vitro kinase assays and mass-spectrometry we demonstrate that pERK 1/2 can phosphorylate pro-Caspase-8 at S387. Also, in EGFR-overexpressing Type I and II ovarian and breast cancer cell lines respectively, ERK 1/2 remain active only during the interphase. During this period, pERK 1/2 could inhibit Trail-induced apoptosis, most effectively during the G1/S phase. By knocking-down the endogenous pro-Caspase-8 using RNAi and replacing it with its non-phosphorylatable counterpart (S387A), a significant increase in Caspase-8 activity upon Trail stimulation was observed, even in the presence of pERK 1/2. Taken together, we propose that a combination of Trail and an inhibitor of ERK 1/2 activities could potentially enhance of Trail's effectiveness as an anti-cancer agent in ERK 1/2 hyperactive cancer cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama/enzimología , Ciclo Celular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Caspasa 8 , Línea Celular Tumoral , Femenino , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosforilación/genética
13.
Cell Res ; 23(11): 1251-3, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24042259

RESUMEN

FOR20, a conserved centrosomal protein, is essential for Plk1 to localize to the centrosome during the S phase and regulate DNA replication. The absence of either Plk1 or FOR20 can stall the cell cycle by a previously unknown intra-S phase centrosomal checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA