Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37939785

RESUMEN

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Síndromes Epilépticos , Malformaciones del Desarrollo Cortical , Humanos , Fluorodesoxiglucosa F18 , Malformaciones del Desarrollo Cortical/genética , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/genética , Epilepsias Parciales/patología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética/métodos , Convulsiones/complicaciones , Serina-Treonina Quinasas TOR , Proteínas Activadoras de GTPasa/genética
2.
Am J Med Genet A ; 191(6): 1599-1606, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36896486

RESUMEN

Mitochondrial respiratory chain disorders (MRC) are amongst the most common group of inborn errors of metabolism. MRC, of which complex I deficiency accounts for approximately a quarter, are very diverse, causing a wide range of clinical problems and can be difficult to diagnose. We report an illustrative MRC case whose diagnosis was elusive. Clinical signs included failure to thrive caused by recurrent vomiting, hypotonia and progressive loss of motor milestones. Initial brain imaging suggested Leigh syndrome but without expected diffusion restriction. Muscle respiratory chain enzymology was unremarkable. Whole-genome sequencing identified a maternally inherited NDUFV1 missense variant [NM_007103.4 (NDUFV1):c.1157G > A; p.(Arg386His)] and a paternally inherited synonymous variant [NM_007103.4 (NDUFV1):c.1080G > A; (p.Ser360=)]. RNA sequencing demonstrated aberrant splicing. This case emphasizes the diagnostic odyssey of a patient in whom a confirmed diagnosis was elusive because of atypical features and normal muscle respiratory chain enzyme (RCE) activities, along with a synonymous variant, which are often filtered out from genomic analyses. It also illustrates the following points: (1) complete resolution of magnetic resonance imaging changes may be part of the picture in mitochondrial disease; (2) analysis for synonymous variants is important for undiagnosed patients; and (3) RNA-seq is a powerful tool to demonstrate pathogenicity of putative splicing variants.


Asunto(s)
Imagen por Resonancia Magnética , Músculos , Humanos , RNA-Seq , Secuenciación Completa del Genoma , Encéfalo , Complejo I de Transporte de Electrón/genética
3.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779245

RESUMEN

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Asunto(s)
Encefalopatías , Síndromes Epilépticos , Espasmos Infantiles , Humanos , Encefalopatías/genética , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/genética , Espasmos Infantiles/complicaciones , Convulsiones/diagnóstico por imagen , Convulsiones/genética , Convulsiones/complicaciones , Encéfalo/patología , Síndromes Epilépticos/complicaciones , Electroencefalografía , Espasmo , Oxidorreductasa que Contiene Dominios WW/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Circulation ; 143(9): 878-891, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33231097

RESUMEN

BACKGROUND: Neurocognitive outcomes beyond childhood in people with a Fontan circulation are not well defined. This study aimed to investigate neurocognitive functioning in adolescents and adults with a Fontan circulation and associations with structural brain injury, brain volumetry, and postnatal clinical factors. METHODS: In a binational study, participants with a Fontan circulation without a preexisting major neurological disability were prospectively recruited from the Australia and New Zealand Fontan Registry. Neurocognitive function was assessed by using Cogstate software in 107 participants with a Fontan circulation and compared with control groups with transposition of the great arteries (n=50) and a normal circulation (n=41). Brain MRI with volumetric analysis was performed in the participants with a Fontan circulation and compared with healthy control data from the ABIDE I and II (Autism Brain Imaging Data Exchange) and PING (Pediatric Imaging, Neurocognition, and Genetics) data repositories. Clinical data were retrospectively collected. RESULTS: Of the participants with a Fontan circulation who had a neurocognitive assessment, 55% were male and the mean age was 22.6 years (SD 7.8). Participants with a Fontan circulation performed worse in several areas of neurocognitive function compared with those with transposition of the great arteries and healthy controls (P<0.05). Clinical factors associated with worse neurocognitive outcomes included more inpatient days during childhood, younger age at Fontan surgery, and longer time since Fontan procedure (P<0.05). Adults with a Fontan circulation had more marked neurocognitive dysfunction than adolescents with a Fontan circulation in 2 domains (psychomotor function, P=0.01 and working memory, P=0.02). Structural brain injury was present in the entire Fontan cohort; the presence of white matter injury was associated with worse paired associate learning (P<0.001), but neither the presence nor severity of infarct, subcortical gray matter injury, and microhemorrhage was associated with neurocognitive outcomes. Compared with healthy controls, people with a Fontan circulation had smaller global brain volumes (P<0.001 in all regions) and smaller regional brain volumes in most cerebral cortical regions (P<0.05). Smaller global brain volumes were associated with worse neurocognitive functioning in several domains (P<0.05). A significant positive association was also identified between global brain volumes and resting oxygen saturations (P≤0.04). CONCLUSIONS: Neurocognitive impairment is common in adolescents and adults with a Fontan circulation and is associated with smaller gray and white matter brain volume. Understanding modifiable factors that contribute to brain injury to optimize neurocognitive function is paramount.


Asunto(s)
Encéfalo/fisiopatología , Disfunción Cognitiva/etiología , Procedimiento de Fontan/efectos adversos , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Disfunción Cognitiva/diagnóstico , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Destreza Motora , Tamaño de los Órganos , Sistema de Registros , Estudios Retrospectivos , Transposición de los Grandes Vasos/cirugía , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Adulto Joven
5.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185323

RESUMEN

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Estudios de Cohortes , Epilepsia/metabolismo , Femenino , Estudios de Seguimiento , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Adulto Joven
6.
Genet Med ; 23(2): 363-373, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33144681

RESUMEN

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Epilepsia , Trastorno del Espectro Autista/genética , Encefalopatías/genética , Epilepsia/genética , Femenino , Genes Ligados a X/genética , Humanos , Masculino , Proteínas del Tejido Nervioso , Convulsiones/genética
7.
Epilepsia ; 62(2): 358-370, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33475165

RESUMEN

OBJECTIVE: To study the epilepsy syndromes among the severe epilepsies of infancy and assess their incidence, etiologies, and outcomes. METHODS: A population-based cohort study was undertaken of severe epilepsies with onset before age 18 months in Victoria, Australia. Two epileptologists reviewed clinical features, seizure videos, and electroencephalograms to diagnose International League Against Epilepsy epilepsy syndromes. Incidence, etiologies, and outcomes at age 2 years were determined. RESULTS: Seventy-three of 114 (64%) infants fulfilled diagnostic criteria for epilepsy syndromes at presentation, and 16 (14%) had "variants" of epilepsy syndromes in which there was one missing or different feature, or where all classical features had not yet emerged. West syndrome (WS) and "WS-like" epilepsy (infantile spasms without hypsarrhythmia or modified hypsarrhythmia) were the most common syndromes, with a combined incidence of 32.7/100 000 live births/year. The incidence of epilepsy of infancy with migrating focal seizures (EIMFS) was 4.5/100 000 and of early infantile epileptic encephalopathy (EIEE) was 3.6/100 000. Structural etiologies were common in "WS-like" epilepsy (100%), unifocal epilepsy (83%), and WS (39%), whereas single gene disorders predominated in EIMFS, EIEE, and Dravet syndrome. Eighteen (16%) infants died before age 2 years. Development was delayed or borderline in 85 of 96 (89%) survivors, being severe-profound in 40 of 96 (42%). All infants with EIEE or EIMFS had severe-profound delay or were deceased, but only 19 of 64 (30%) infants with WS, "WS-like," or "unifocal epilepsy" had severe-profound delay, and only two of 64 (3%) were deceased. SIGNIFICANCE: Three quarters of severe epilepsies of infancy could be assigned an epilepsy syndrome or "variant syndrome" at presentation. In this era of genomic testing and advanced brain imaging, diagnosing epilepsy syndromes at presentation remains clinically useful for guiding etiologic investigation, initial treatment, and prognostication.


Asunto(s)
Discapacidades del Desarrollo/epidemiología , Epilepsias Mioclónicas/epidemiología , Espasmos Infantiles/epidemiología , Anticonvulsivantes/uso terapéutico , Preescolar , Estudios de Cohortes , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/fisiopatología , Progresión de la Enfermedad , Electroencefalografía , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/etiología , Epilepsias Mioclónicas/fisiopatología , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/epidemiología , Síndromes Epilépticos/etiología , Síndromes Epilépticos/fisiopatología , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Síndrome de Lennox-Gastaut/tratamiento farmacológico , Síndrome de Lennox-Gastaut/epidemiología , Síndrome de Lennox-Gastaut/etiología , Síndrome de Lennox-Gastaut/fisiopatología , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/epidemiología , Malformaciones del Desarrollo Cortical/cirugía , Mortalidad , Índice de Severidad de la Enfermedad , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/etiología , Espasmos Infantiles/fisiopatología , Victoria/epidemiología
8.
Cogn Behav Neurol ; 34(1): 38-52, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33652468

RESUMEN

Verbal adynamia is characterized by markedly reduced spontaneous speech that is not attributable to a core language deficit such as impaired naming, reading, repetition, or comprehension. In some cases, verbal adynamia is severe enough to be considered dynamic aphasia. We report the case of a 40-year-old, left-handed, male native English speaker who presented with partial rhombencephalosynapsis, corpus callosum dysgenesis, and a language profile that is consistent with verbal adynamia, or subclinical dynamic aphasia, possibly underpinned by difficulties selecting and generating ideas for expression. This case is only the second investigation of dynamic aphasia in an individual with a congenital brain malformation. It is also the first detailed neuropsychological report of an adult with partial rhombencephalosynapsis and corpus callosum dysgenesis, and the only known case of superior intellectual abilities in this context.


Asunto(s)
Agenesia del Cuerpo Calloso/complicaciones , Pruebas Neuropsicológicas/normas , Rombencéfalo/fisiopatología , Trastornos del Habla/etiología , Conducta Verbal/fisiología , Adulto , Humanos , Masculino
9.
Brain ; 142(4): 966-977, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796815

RESUMEN

Speech disorders are highly prevalent in the preschool years, but frequently resolve. The neurobiological basis of the most persistent and severe form, apraxia of speech, remains elusive. Current neuroanatomical models of speech processing in adults propose two parallel streams. The dorsal stream is involved in sound to motor speech transformations, while the ventral stream supports sound/letter to meaning. Data-driven theories on the role of these streams during atypical speech and language development are lacking. Here we provide comprehensive behavioural and neuroimaging data on a large novel family where one parent and 11 children presented with features of childhood apraxia of speech (the same speech disorder associated with FOXP2 variants). The genetic cause of the disorder in this family remains to be identified. Importantly, in this family the speech disorder is not systematically associated with language or literacy impairment. Brain MRI scanning in seven children revealed large grey matter reductions over the left temporoparietal region, but not in the basal ganglia, relative to typically-developing matched peers. In addition, we detected white matter reductions in the arcuate fasciculus (dorsal language stream) bilaterally, but not in the inferior fronto-occipital fasciculus (ventral language stream) nor in primary motor pathways. Our findings identify disruption of the dorsal language stream as a novel neural phenotype of developmental speech disorders, distinct from that reported in speech disorders associated with FOXP2 variants. Overall, our data confirm the early role of this stream in auditory-to-articulation transformations. 10.1093/brain/awz018_video1 awz018media1 6018582401001.


Asunto(s)
Trastornos del Habla/genética , Trastornos del Habla/fisiopatología , Percepción del Habla/genética , Adolescente , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Niño , Preescolar , Familia , Femenino , Humanos , Lenguaje , Imagen por Resonancia Magnética , Masculino , Red Nerviosa , Vías Nerviosas , Neuroimagen , Linaje , Habla/fisiología , Percepción del Habla/fisiología
10.
J Paediatr Child Health ; 56(8): 1210-1218, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32329550

RESUMEN

AIM: Late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease is a rare neurodegenerative disorder presenting in children aged 2-4 years with seizures and loss of motor and language skills, followed by blindness and death in late childhood. Initial presenting features are similar to a range of common epilepsies. We aim to highlight typical clinical and radiological features that may prompt diagnosis of CLN2 disease in early disease stages. METHODS: We present a series of 13 Australian patients with CLN2 disease, describing clinical features, disease evolution, neuroimaging, electroencephalogram, biochemical and genetic results. Expert neuroradiological magnetic resonance imaging (MRI) analysis was retrospectively performed on 10 cases. RESULTS: Twelve patients presented with seizures, with initial seizures being focal (n = 4), generalised tonic-clonic (n = 3), absence (n = 3) and febrile (n = 2). Eleven patients (85%) had a language delay before the onset of seizures. Cerebellar or cerebral atrophy was noted in all patients on centralised MRI review, with abnormalities of the brain-stem, ventricles, corpus callosum and hippocampi. CONCLUSIONS: Early language delay with the onset of seizures at 2-4 years of age is the hallmark of CLN2 disease. MRI findings of early subtle atrophy in the cerebellum or posterior cortical regions should hasten testing for CLN2 disease to enable early initiation of enzyme replacement therapy.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Australia , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Electroencefalografía , Humanos , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Estudios Retrospectivos , Tripeptidil Peptidasa 1
11.
Am J Med Genet C Semin Med Genet ; 181(4): 627-637, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31710781

RESUMEN

EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.


Asunto(s)
Encéfalo/patología , Proteínas Asociadas a Microtúbulos/genética , Humanos , Malformaciones del Desarrollo Cortical del Grupo II/genética , Mutación Missense , Eliminación de Secuencia
12.
Ann Neurol ; 81(5): 677-689, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28380698

RESUMEN

OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV 3.1 channels. RESULTS: Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV 3.1, increasing channel availability. INTERPRETATION: MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017;81:677-689.


Asunto(s)
Ataxia , Disfunción Cognitiva/etiología , Epilepsias Mioclónicas , Calor , Canales de Potasio Shaw/metabolismo , Adolescente , Adulto , Edad de Inicio , Ataxia/complicaciones , Ataxia/diagnóstico por imagen , Ataxia/genética , Ataxia/fisiopatología , Electroencefalografía , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/fisiopatología , Femenino , Células HEK293 , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Linaje , Canales de Potasio Shaw/genética , Síndrome , Adulto Joven
13.
Am J Med Genet A ; 176(1): 230-234, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29160035

RESUMEN

Inherited metabolic disorders are traditionally diagnosed using broad and expensive panels of screening tests, often including invasive skin and muscle biopsy. Proponents of next-generation genetic sequencing have argued that replacing these screening panels with whole exome sequencing (WES) would save money. Here, we present a complex patient in whom WES allowed diagnosis of GM1 gangliosidosis, caused by homozygous GLB1 mutations, resulting in ß-galactosidase deficiency. A 10-year-old girl had progressive neurologic deterioration, macular cherry-red spot, and cornea verticillata. She had marked clinical improvement with initiation of the ketogenic diet. Comparative genomic hybridization microarray showed mosaic chromosome 3 paternal uniparental disomy (UPD). GM1 gangliosidosis was suspected, however ß-galactosidase assay was normal. Trio WES identified a paternally-inherited pathogenic splice-site GLB1 mutation (c.75+2dupT). The girl had GM1 gangliosidosis; however, enzymatic testing in blood was normal, presumably compensated for by non-UPD cells. Severe neurologic dysfunction occurred due to disruptive effects of UPD brain cells.


Asunto(s)
Gangliosidosis GM1/diagnóstico , Gangliosidosis GM1/genética , Estudios de Asociación Genética , Mosaicismo , Disomía Uniparental , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Encéfalo/patología , Niño , Electroencefalografía , Activación Enzimática , Pruebas de Enzimas , Femenino , Genotipo , Humanos , Neuroimagen , Fenotipo , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Piel/patología , Secuenciación del Exoma
14.
Epilepsia ; 59(1): e5-e13, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171013

RESUMEN

Heterozygous de novo variants in the autophagy gene, WDR45, are found in beta-propeller protein-associated neurodegeneration (BPAN). BPAN is characterized by adolescent onset dementia and dystonia; 66% patients have seizures. We asked whether WDR45 was associated with developmental and epileptic encephalopathy (DEE). We performed next generation sequencing of WDR45 in 655 patients with developmental and epileptic encephalopathies. We identified 3/655 patients with DEE plus 4 additional patients with de novo WDR45 pathogenic variants (6 truncations, 1 missense); all were female. Six presented with DEE and 1 with early onset focal seizures and profound regression. Median seizure onset was 12 months, 6 had multiple seizure types, and 5/7 had focal seizures. Three patients had magnetic resonance susceptibility-weighted imaging; blooming was noted in the globus pallidi and substantia nigra in the 2 older children aged 4 and 9 years, consistent with iron accumulation. We show that de novo pathogenic variants are associated with a range of developmental and epileptic encephalopathies with profound developmental consequences.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Mutación/genética , Espasmos Infantiles/complicaciones , Espasmos Infantiles/genética , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Espasmos Infantiles/diagnóstico por imagen
15.
Epilepsia ; 59(6): 1177-1187, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750358

RESUMEN

OBJECTIVE: The severe epilepsies of infancy (SEI) are a devastating group of disorders that pose a major care and economic burden on society; early diagnosis is critical for optimal management. This study sought to determine the incidence and etiologies of SEI, and model the yield and cost-effectiveness of early genetic testing. METHODS: A population-based study was undertaken of the incidence, etiologies, and cost-effectiveness of a whole exome sequencing-based gene panel (targeted WES) in infants with SEI born during 2011-2013, identified through electroencephalography (EEG) and neonatal databases. SEI was defined as seizure onset before age 18 months, frequent seizures, epileptiform EEG, and failure of ≥2 antiepileptic drugs. Medical records, investigations, MRIs, and EEGs were analyzed, and genetic testing was performed if no etiology was identified. Economic modeling was performed to determine yield and cost-effectiveness of investigation of infants with unknown etiology at epilepsy onset, incorporating targeted WES at different stages of the diagnostic pathway. RESULTS: Of 114 infants with SEI (incidence = 54/100 000 live births/y), the etiology was determined in 76 (67%): acquired brain injuries (n = 14), focal cortical dysplasias (n = 14), other brain malformations (n = 17), channelopathies (n = 11), chromosomal (n = 9), metabolic (n = 6), and other genetic (n = 5) disorders. Modeling showed that incorporating targeted WES increased diagnostic yield compared to investigation without targeted WES (48/86 vs 39/86). Early targeted WES had lower total cost ($677 081 U.S. dollars [USD] vs $738 136 USD) than late targeted WES. A pathway with early targeted WES and limited metabolic testing yielded 7 additional diagnoses compared to investigation without targeted WES (46/86 vs 39/86), with lower total cost ($455 597 USD vs $661 103 USD), lower cost per diagnosis ($9904 USD vs $16 951 USD), and a dominant cost-effectiveness ratio. SIGNIFICANCE: Severe epilepsies occur in 1 in 2000 infants, with the etiology identified in two-thirds, most commonly malformative. Early use of targeted WES yields more diagnoses at lower cost. Early genetic diagnosis will enable timely administration of precision medicines, once developed, with the potential to improve long-term outcome.


Asunto(s)
Análisis Costo-Beneficio , Epilepsia/economía , Epilepsia/epidemiología , Pruebas Genéticas/economía , Australia , Planificación en Salud Comunitaria , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Humanos , Incidencia , Lactante , Masculino , Modelos Económicos
16.
Brain ; 140(6): 1595-1610, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28549128

RESUMEN

Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.


Asunto(s)
Adenosina Trifosfatasas/genética , Cerebelo/anomalías , ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Malformaciones del Sistema Nervioso/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Consanguinidad , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/fisiopatología , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/fisiopatología
17.
Ann Neurol ; 79(1): 132-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26285051

RESUMEN

We describe first cousin sibling pairs with focal epilepsy, one of each pair having focal cortical dysplasia (FCD) IIa. Linkage analysis and whole-exome sequencing identified a heterozygous germline frameshift mutation in the gene encoding nitrogen permease regulator-like 3 (NPRL3). NPRL3 is a component of GAP Activity Towards Rags 1, a negative regulator of the mammalian target of rapamycin complex 1 signaling pathway. Immunostaining of resected brain tissue demonstrated mammalian target of rapamycin activation. Screening of 52 unrelated individuals with FCD identified 2 additional patients with FCDIIa and germline NPRL3 mutations. Similar to DEPDC5, NPRL3 mutations may be considered as causal variants in patients with FCD or magnetic resonance imaging-negative focal epilepsy.


Asunto(s)
Epilepsias Parciales/genética , Epilepsia/genética , Proteínas Activadoras de GTPasa/genética , Malformaciones del Desarrollo Cortical de Grupo I/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Mutación , Linaje , Transducción de Señal , Serina-Treonina Quinasas TOR
18.
Epilepsia ; 58(6): 1085-1094, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28440867

RESUMEN

OBJECTIVE: This study was designed to describe the spectrum of epilepsy phenotypes in Koolen-de Vries syndrome (KdVS), a genetic syndrome involving dysmorphic features, intellectual disability, hypotonia, and congenital malformations, that occurs secondary to 17q21.31 microdeletions and heterozygous mutations in KANSL1. METHODS: We were invited to attend a large gathering of individuals with KdVS and their families. While there, we recruited individuals with KdVS and seizures, and performed thorough phenotyping. Additional subjects were included who approached us after the family support group brought attention to our research via social media. Inclusion criteria were genetic testing results demonstrating 17q21.31 deletion or KANSL1 mutation, and at least one seizure. RESULTS: Thirty-one individuals were studied, aged 2-35 years. Median age at seizure onset was 3.5 years, and 9 of 22 had refractory seizures 2 years after onset. Focal impaired awareness seizures were the most frequent seizure type occurring in 20 of 31, usually with prominent autonomic features. Twenty-one patients had prolonged seizures and, at times, refractory status epilepticus. Electroencephalography (EEG) showed focal/multifocal epileptiform discharges in 20 of 26. MRI studies of 13 patients were reviewed, and all had structural anomalies. Corpus callosum dysgenesis, abnormal hippocampi, and dilated ventricles were the most common, although periventricular nodular heterotopia, focal cortical dysplasia, abnormal sulcation, and brainstem and cerebellum abnormalities were also observed. One patient underwent epilepsy surgery for a lesion that proved to be an angiocentric glioma. SIGNIFICANCE: The typical epilepsy phenotype of KdVS involves childhood-onset focal seizures that are prolonged and have prominent autonomic features. Multifocal epileptiform discharges are the typical EEG pattern. Structural brain abnormalities may be universal, including signs of abnormal neuroblast migration and abnormal axonal guidance. Epilepsy surgery should be undertaken with care given the widespread neuroanatomic abnormalities; however, tumors are a rare, yet important, occurrence.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/fisiopatología , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/fisiopatología , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/genética , Adolescente , Adulto , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Análisis Mutacional de ADN , Electroencefalografía/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Femenino , Tamización de Portadores Genéticos , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Masculino , Proteínas Nucleares/genética , Fenotipo , Resultado del Tratamiento , Adulto Joven
19.
Radiology ; 281(3): 896-906, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27355897

RESUMEN

Purpose To investigate whether it is possible in patients with periventricular nodular heterotopia (PVNH) to detect abnormal fiber projections that have only previously been reported in the histopathology literature. Materials and Methods Whole-brain diffusion-weighted (DW) imaging data from 14 patients with bilateral PVNH and 14 age- and sex-matched healthy control subjects were prospectively acquired by using 3.0-T magnetic resonance (MR) imaging between August 1, 2008, and December 5, 2012. All participants provided written informed consent. The DW imaging data were processed to generate whole-brain constrained spherical deconvolution (CSD)-based tractography data and super-resolution track-density imaging (TDI) maps. The tractography data were overlaid on coregistered three-dimensional T1-weighted images to visually assess regions of heterotopia. A panel of MR imaging researchers independently assessed each case and indicated numerically (no = 1, yes = 2) as to the presence of abnormal fiber tracks in nodular tissue. The Fleiss κ statistical measure was applied to assess the reader agreement. Results Abnormal fiber tracks emanating from one or more regions of heterotopia were reported by all four readers in all 14 patients with PVNH (Fleiss κ = 1). These abnormal structures were not visible on the tractography data from any of the control subjects and were not discernable on the conventional T1-weighted images of the patients with PVNH. Conclusion Whole-brain CSD-based fiber tractography and super-resolution TDI mapping reveals abnormal fiber projections in nodular tissue suggestive of abnormal organization of white matter (with abnormal fibers both within nodules and projecting to the surrounding white matter) in patients with bilateral PVNH. © RSNA, 2016.


Asunto(s)
Epilepsia/patología , Heterotopia Nodular Periventricular/patología , Adolescente , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Epilepsia/genética , Femenino , Filaminas/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación/genética , Heterotopia Nodular Periventricular/genética , Estudios Prospectivos , Adulto Joven
20.
Am J Med Genet A ; 170A(4): 1059-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708157

RESUMEN

Mutations in COL4A1 are well described and result in brain abnormalities manifesting with severe neurological deficits including cerebral palsy, intellectual disability, and focal epilepsy. Families with mutations in COL4A2 are now emerging with a similar phenotype. We describe a family with an autosomal dominant disorder comprising porencephaly, focal epilepsy, and lens opacities, which was negative for mutations in COL4A1. Using whole exome sequencing of three affected individuals from three generations, we identified a rare variant in COL4A2. This COL4A2 (c.2399G>A, p.G800E, CCDS41907.1) variant was predicted to be damaging by multiple bioinformatics tools and affects an invariable glycine residue that is essential for the formation of collagen IV heterotrimers. The cataracts identified in this family expand the phenotypic spectrum associated with mutations in COL4A2 and highlight the increasing overlap with phenotypes associated with COL4A1 mutations.


Asunto(s)
Catarata/diagnóstico , Catarata/genética , Colágeno Tipo IV/genética , Genes Dominantes , Mutación , Porencefalia/diagnóstico , Porencefalia/genética , Adolescente , Adulto , Anciano , Encéfalo/patología , Exoma , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA