RESUMEN
BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.
Asunto(s)
Enfermedades por Prión , Priones , Scrapie , Animales , Caballos/genética , Ovinos/genética , Perros , Priones/genética , Priones/metabolismo , Proteínas Priónicas/genética , Polimorfismo de Nucleótido Simple , Ganado/genética , Sistemas de Lectura Abierta , Filogenia , Camelus/genética , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Cabras/genética , Cabras/metabolismo , Scrapie/genéticaRESUMEN
BACKGROUND: Cattle are considered to be the most desirable livestock by small scale farmers. In Africa, although comprehensive genomic studies have been carried out on cattle, the genetic variations in indigenous cattle from Nigeria have not been fully explored. In this study, genome-wide analysis based on genotyping-by-sequencing (GBS) of 193 Nigerian cattle was used to reveal new insights on the history of West African cattle and their adaptation to the tropical African environment, particularly in sub-Saharan region. RESULTS: The GBS data were evaluated against whole-genome sequencing (WGS) data and high rate of variant concordance between the two platforms was evident with high correlated genetic distance matrices genotyped by both methods suggestive of the reliability of GBS applicability in population genetics. The genetic structure of Nigerian cattle was observed to be homogenous and unique from other African cattle populations. Selection analysis for the genomic regions harboring imprints of adaptation revealed genes associated with immune responses, growth and reproduction, efficiency of feeds utilization, and heat tolerance. Our findings depict potential convergent adaptation between African cattle, dogs and humans with adaptive genes SPRY2 and ITGB1BP1 possibly involved in common physiological activities. CONCLUSION: The study presents unique genetic patterns of Nigerian cattle which provide new insights on the history of cattle in West Africa based on their population structure and the possibility of parallel adaptation between African cattle, dogs and humans in Africa which require further investigations.
Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Genética de Población , Nigeria , Reproducibilidad de los Resultados , Selección GenéticaRESUMEN
Scrapie is a fatal prion protein disease stiffly associated with single nucleotide polymorphism (SNPs) of the prion protein gene (PRNP). The prevalence of this deadly disease has been reported in small ruminants, including goats. The Nigerian goats are hardy, trypano-tolerant, and contribute to the protein intake of the increasing population. Although scrapie has been reported in Nigerian goats, there is no study on the polymorphism of the PRNP gene. Herein, we evaluated the genetic and allele distributions of PRNP polymorphism in 132 Nigerian goats and compared them with publicly available studies on scrapie-affected goats. We utilized Polyphen-2, PROVEAN and AMYCO programs to examine structural variations produced by the non-synonymous SNPs. Our study revealed 29 SNPs in Nigerian goats, of which 14 were non-synonymous, and 23 were novel. There were significant differences (P < 0.001) in the allele frequencies of PRNP codons 139, 146, 154 and 193 in Nigerian goats compared with scrapie-affected goats, except for Northern Italian goats at codon 154. Based on the prediction by Polyphen-2, R139S and N146S were 'benign', R154H was 'probably damaging', and T193I was 'possibly damaging'. In contrast, PROVEAN predicted 'neutral' for all non-synonymous SNPs, while AMYCO showed a similar amyloid propensity of PRNP for resistant haplotype and two haplotypes of Nigerian goats. Our study is the first to investigate the polymorphism of scrapie-related genes in Nigerian goats.
Asunto(s)
Enfermedades de las Cabras , Priones , Scrapie , Animales , Ovinos/genética , Priones/genética , Proteínas Priónicas/genética , Scrapie/genética , Scrapie/epidemiología , Cabras/genética , Enfermedades de las Cabras/genética , Polimorfismo de Nucleótido Simple , CodónRESUMEN
Polymorphism of the prion protein gene (PRNP) gene determines an animal's susceptibility to scrapie. Three polymorphisms at codons 136, 154, and 171 have been linked to classical scrapie susceptibility, although many variants of PRNP have been reported. However, no study has investigated scrapie susceptibility in Nigerian sheep from the drier agro-climate zones. In this study, we aimed to identify PRNP polymorphism in nucleotide sequences of 126 Nigerian sheep by comparing them with public available studies on scrapie-affected sheep. Further, we deployed Polyphen-2, PROVEAN, and AMYCO analyses to determine the structure changes produced by the non-synonymous SNPs. Nineteen (19) SNPs were found in Nigerian sheep with 14 being non-synonymous. Interestingly, one novel SNP (T718C) was identified. There was a significant difference (P < 0.05) in the allele frequencies of PRNP codon 154 between sheep in Italy and Nigeria. Based on the prediction by Polyphen-2, R154H was probably damaging while H171Q was benign. Contrarily, all SNPs were neutral via PROVEAN analysis while two haplotypes (HYKK and HDKK) had similar amyloid propensity of PRNP with resistance haplotype in Nigerian sheep. Our study provides valuable information that could be possibly adopted in programs targeted at breeding for scrapie resistance in sheep from tropical regions.
Asunto(s)
Proteínas Priónicas , Scrapie , Ovinos , Animales , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Proteínas Priónicas/genética , Scrapie/genética , Ovinos/genéticaRESUMEN
The African cattle provide unique genetic resources shaped up by both diverse tropical environmental conditions and human activities, the assessment of their genetic diversity will shade light on the mechanism of their remarkable adaptive capacities. We therefore analyzed the genetic diversity of cattle samples from Nigeria using both maternal and paternal DNA markers. Nigerian cattle can be assigned to 80 haplotypes based on the mitochondrial DNA (mtDNA) D-loop sequences and haplotype diversity was 0.985 + 0.005. The network showed two major matrilineal clustering: the dominant cluster constituting the Nigerian cattle together with other African cattle while the other clustered Eurasian cattle. Paternal analysis indicates only zebu haplogroup in Nigerian cattle with high genetic diversity 1.000 ± 0.016 compared to other cattle. There was no signal of maternal genetic structure in Nigerian cattle population, which may suggest an extensive genetic intermixing within the country. The absence of Bos indicus maternal signal in Nigerian cattle is attributable to vulnerability bottleneck of mtDNA lineages and concordance with the view of male zebu genetic introgression in African cattle. Our study shades light on the current genetic diversity in Nigerian cattle and population history in West Africa.
RESUMEN
Molecular studies on donkey mitochondrial sequences have clearly defined two distinct maternal lineages involved in domestication. However, domestication histories of these two lineages remain enigmatic. We therefore compared several population characteristics between these two lineages based on global sampling, which included 171 sequences obtained in this study (including Middle Asian, East Asian, and African samples) plus 536 published sequences (including European, Asian, and African samples). The two lineages were clearly separated from each other based on whole mitochondrial genomes and partial non-coding displacement loop (D-loop) sequences, respectively. The Clade I lineage experienced an increase in population size more than 8 000 years ago and shows a complex haplotype network. In contrast, the population size of the Clade II lineage has remained relatively constant, with a simpler haplotype network. Although the distribution of the two lineages was almost equal across the Eurasian mainland, they still presented discernible but complex geographic bias in most parts of Africa, which are known as their domestication sites. Donkeys from sub-Saharan Africa tended to descend from the Clade I lineage, whereas the Clade II lineage was dominant along the East and North coasts of Africa. Furthermore, the migration routes inferred from diversity decay suggested different expansion across China between the two lineages. Altogether, these differences indicated non-simultaneous domestication of the two lineages, which was possibly influenced by the response of pastoralists to the desertification of the Sahara and by the social expansion and trade of ancient humans in Northeast Africa, respectively.