Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 225(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35647659

RESUMEN

Understanding how organismal traits determine performance and, ultimately, fitness is a fundamental goal of evolutionary eco-morphology. However, multiple traits can interact in non-linear and context-dependent ways to affect performance, hindering efforts to place natural populations with respect to performance peaks or valleys. Here, we used an established mechanistic model of suction-feeding performance (SIFF) derived from hydrodynamic principles to estimate a theoretical performance landscape for zooplankton prey capture. This performance space can be used to predict prey capture performance for any combination of six morphological and kinematic trait values. We then mapped in situ high-speed video observations of suction feeding in a natural population of a coral reef zooplanktivore, Chromis viridis, onto the performance space to estimate the population's location with respect to the topography of the performance landscape. Although the kinematics of the natural population closely matched regions of high performance in the landscape, the population was not located on a performance peak. Individuals were furthest from performance peaks on the peak gape, ram speed and mouth opening speed trait axes. Moreover, we found that the trait combinations in the observed population were associated with higher performance than expected by chance, suggesting that these combinations are under selection. Our results provide a framework for assessing whether natural populations occupy performance optima.


Asunto(s)
Perciformes , Conducta Predatoria , Animales , Fenómenos Biomecánicos , Conducta Alimentaria , Succión
2.
J Theor Biol ; 407: 155-160, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27449788

RESUMEN

Taylor's Power Law for the temporal fluctuation in population size (TL) posits that the variance in abundance scales according to aM(b); where M is the mean abundance and a and b are the 'proportionality' and 'scaling' coefficients. As one of the few empirical rules in population ecology, TL has attracted substantial theoretical and empirical attention. Much of this attention focused on the scaling coefficient; particularly its ubiquitous deviation from the null value of 2. Here we present a line of reasoning that challenges the power-law interpretation of the empirical log-linear relationship between the mean and variance of population size. At the core of our reasoning is the proposition that populations vary not only with respect to M but also with respect to a; which leaves the log-linear relationship intact but forfeits its power-law interpretation. Using the stochastic logistic-growth model as an example, we show that ignoring among-population variation in a is akin to ignoring the variation in the intrinsic rate of growth (r). Accordingly, we show that the slope of the log-linear relationship (b) is a function of the among-population (co)variation in r and the carrying-capacity. We further demonstrate that local environmental stochasticity is sufficient to generate the full range of observed values of b, and that b can in fact be insensitive to substantial differences in the balance between variance-generating and stabilizing processes.


Asunto(s)
Modelos Biológicos , Densidad de Población , Ecosistema , Factores de Tiempo
3.
J Theor Biol ; 359: 112-9, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24911779

RESUMEN

Group foragers can utilize public information to better estimate patch quality and arrive at more efficient patch-departure rules. However, acquiring such information may come at a cost; e.g. reduced search efficiency. We present a Bayesian group-foraging model in which social foragers do not require full awareness of their companions' foraging success; only of their number. In our model, patch departure is based on direct estimates of the number of remaining items. This is achieved by considering all likely combinations of initial patch-quality and group foraging-success; given the individual forager's experience within the patch. Slower rates of information-acquisition by our 'partially-aware' foragers lead them to over-utilize poor patches; more than fully-aware foragers. However, our model suggests that the ensuing loss in long-term intake-rates can be matched by a relatively low cost to the acquisition of full public information. In other words, we suggest that group-size offers sufficient information for optimal patch utilization by social foragers. We suggest, also, that our model is applicable to other situations where resources undergo 'background depletion', which is coincident but independent of the consumer's own utilization.


Asunto(s)
Acceso a la Información , Comportamiento del Consumidor/estadística & datos numéricos , Almacenamiento y Recuperación de la Información/estadística & datos numéricos , Concienciación , Teorema de Bayes , Ecosistema , Conducta Alimentaria , Conocimiento , Modelos Teóricos , Conducta Social
4.
Anim Cogn ; 17(6): 1393-400, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24942108

RESUMEN

Studies concerning the perceptual processes of animals are not only interesting, but are fundamental to the understanding of other developments in information processing among non-humans. Carefully used visual illusions have been proven to be an informative tool for understanding visual perception. In this behavioral study, we demonstrate that cuttlefish are responsive to visual cues involving texture gradients. Specifically, 12 out of 14 animals avoided swimming over a solid surface with a gradient picture that to humans resembles an illusionary crevasse, while only 5 out of 14 avoided a non-illusionary texture. Since texture gradients are well-known cues for depth perception in vertebrates, we suggest that these cephalopods were responding to the depth illusion created by the texture density gradient. Density gradients and relative densities are key features in distance perception in vertebrates. Our results suggest that they are fundamental features of vision in general, appearing also in cephalopods.


Asunto(s)
Percepción de Profundidad , Sepia/fisiología , Animales , Ilusiones Ópticas , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA