Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 192(2): 114, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31940101

RESUMEN

17ß-Estradiol (E2) is a natural estrogen produced by the feminine endocrine system. It is excreted mainly through urine and feces. Exposure to E2 may affect the reproductive system of both animals and humans, especially since the removal of E2 in conventional processes and technologies present in the wastewater treatment plants is not sufficient. Chlorine is one of the most studied and used oxidant worldwide. Although there are studies that demonstrate the endocrine disrupting compounds removal like E2, its reaction with organic matter can originate by-products, namely, trihalomethanes, which are known to have high toxic potential. The main aim of the present study was to evaluate the removal of E2 (50 µg E2 L-1-maximum concentration) using peracetic acid (PAA), a seeming cleaner and innocuous alternative to chlorine. To this end, a series of jar tests were performed, using different peracetic acid concentrations (1, 5, 10, and 15 mg L-1) and contact times (10, 15, and 20 min). The results obtained showed that a peracetic acid concentration of 15 mg L-1 with a contact time of 20 min had a removal efficacy of approximately 100%. The second main goal of this study was to evaluate the ecotoxicological potential of the tested treatments on the zebrafish Danio rerio. Several oxidative stress biomarkers were evaluated, namely glutathione S-transferase, lipid peroxidation, and catalase, besides vitellogenin. Both peracetic acid and E2 caused significant increases in the oxidative stress biomarkers, although this did not lead to increased lipid peroxidation levels. In addition, peracetic acid significantly decreased the estrogenic activity of E2, as indicated by decreased vitellogenin levels. Peracetic acid demonstrated to have great potential as an alternative disinfectant for chlorine treatments, and indications for future research are discussed.


Asunto(s)
Monitoreo del Ambiente , Estrógenos/análisis , Ácido Peracético/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Animales , Cloro , Desinfectantes , Disruptores Endocrinos/análisis , Estradiol/análisis , Estrona , Humanos , Trihalometanos , Vitelogeninas , Aguas Residuales
2.
J Environ Sci (China) ; 89: 1-8, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31892382

RESUMEN

Increasing concerns have been raised on endocrine disrupting chemicals like the sex hormone 17α-ethinylestradiol (EE2), the more since traditional wastewater (WW) treatments appear to be ineffective for their removal. The efficacy of the relatively novel disinfectant peracetic acid (PAA) in EE2 removal was evaluated, as well as its potential effects on WW quality parameters. The treatments tested for EE2 removal were also evaluated in terms of toxicity, through the determination of biochemical responses (antioxidant enzymes, lipid peroxidation and vitellogenin induction) using zebrafish (Danio rerio) as a biological model. PAA contact times less than 20 min appeared insufficient regardless of the PAA dose tested, but a 100% EE2 removal was attained at a PAA concentration of 15 mg/L with a contact time of 20 min. Total suspended solids, chemical oxygen demand and pH in PAA treatments remained well within levels set in European legislation for WW discharge. EE2 induced significant increased vitellogenin (VTG) levels in both female and male fish, indicating increased estrogenic activity, especially in males suggesting an endocrine disruption effect. With the addition of PAA (15 mg/L), however, VTG levels in both sexes returned to control values. Although this PAA treatment showed increased levels of the antioxidant enzyme catalase, the lipid peroxidation levels were similar or even lower than in controls. Overall the results suggest that the use of PAA appears a promising way forward as a less toxic alternative to chlorine disinfection with high efficiency in the removal of EDC like EE2.


Asunto(s)
Etinilestradiol/química , Ácido Peracético/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Contaminantes Químicos del Agua/química , Anticonceptivos , Estradiol , Etinilestradiol/análisis , Ácido Peracético/análisis , Vitelogeninas , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA