Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37143309

RESUMEN

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Asunto(s)
Edema Encefálico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutación/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Encéfalo/metabolismo , Astrocitos/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Cereb Cortex ; 33(6): 2857-2878, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802476

RESUMEN

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Asunto(s)
Neocórtex , Receptores de N-Metil-D-Aspartato , Ratas , Adulto , Animales , Humanos , Ratones , Receptores de N-Metil-D-Aspartato/fisiología , Ratas Wistar , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología
3.
J Neurosci ; 42(11): 2221-2233, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35082120

RESUMEN

Brain function depends on segregation and integration of information processing in brain networks often separated by long-range anatomic connections. Neuronal oscillations orchestrate such distributed processing through transient amplitude and phase coupling, yet surprisingly, little is known about local network properties facilitating these functional connections. Here, we test whether criticality, a dynamical state characterized by scale-free oscillations, optimizes the capacity of neuronal networks to couple through amplitude or phase, and transfer information. We coupled in silico networks which exhibit oscillations in the α band (8-16 Hz), and varied excitatory and inhibitory connectivity. We found that phase coupling of oscillations emerges at criticality, and that amplitude coupling, as well as information transfer, are maximal when networks are critical. Importantly, regulating criticality through modulation of synaptic gain showed that critical dynamics, as opposed to a static ratio of excitatory and inhibitory connections, optimize network coupling and information transfer. Our data support the idea that criticality is important for local and global information processing and may help explain why brain disorders characterized by local alterations in criticality also exhibit impaired long-range synchrony, even before degeneration of axonal connections.SIGNIFICANCE STATEMENT To perform adaptively in a changing environment, our brains dynamically coordinate activity across distant areas. Empirical evidence suggests that long-range amplitude and phase coupling of oscillations are systems-level mechanisms enabling transient formation of spatially distributed functional networks on the backbone of a relatively static structural connectome. However, surprisingly little is known about the local network properties that optimize coupling and information transfer. Here, we show that criticality, a dynamical state characterized by scale-free oscillations and a hallmark of neuronal network activity, optimizes the capacity of neuronal networks to couple through amplitude or phase and transfer information.


Asunto(s)
Encéfalo , Conectoma , Encéfalo/fisiología , Cabeza , Neuronas
4.
Glia ; 71(7): 1770-1785, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37002718

RESUMEN

Loss of function of the astrocyte membrane protein MLC1 is the primary genetic cause of the rare white matter disease Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC), which is characterized by disrupted brain ion and water homeostasis. MLC1 is prominently present around fluid barriers in the brain, such as in astrocyte endfeet contacting blood vessels and in processes contacting the meninges. Whether the protein plays a role in other astrocyte domains is unknown. Here, we show that MLC1 is present in distal astrocyte processes, also known as perisynaptic astrocyte processes (PAPs) or astrocyte leaflets, which closely interact with excitatory synapses in the CA1 region of the hippocampus. We find that the PAP tip extending toward excitatory synapses is shortened in Mlc1-null mice. This affects glutamatergic synaptic transmission, resulting in a reduced rate of spontaneous release events and slower glutamate re-uptake under challenging conditions. Moreover, while PAPs in wildtype mice retract from the synapse upon fear conditioning, we reveal that this structural plasticity is disturbed in Mlc1-null mice, where PAPs are already shorter. Finally, Mlc1-null mice show reduced contextual fear memory. In conclusion, our study uncovers an unexpected role for the astrocyte protein MLC1 in regulating the structure of PAPs. Loss of MLC1 alters excitatory synaptic transmission, prevents normal PAP remodeling induced by fear conditioning and disrupts contextual fear memory expression. Thus, MLC1 is a new player in the regulation of astrocyte-synapse interactions.


Asunto(s)
Astrocitos , Proteínas de la Membrana , Sinapsis , Animales , Ratones , Astrocitos/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Sinapsis/metabolismo
5.
Cereb Cortex ; 32(11): 2424-2436, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34564728

RESUMEN

Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía , Lóbulo Temporal
6.
Mol Psychiatry ; 25(12): 3380-3398, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31431685

RESUMEN

Neuronal network dysfunction is increasingly recognized as an early symptom in Alzheimer's disease (AD) and may provide new entry points for diagnosis and intervention. Here, we show that amyloid-beta-induced hyperexcitability of hippocampal inhibitory parvalbumin (PV) interneurons importantly contributes to neuronal network dysfunction and memory impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We demonstrate that hippocampal PV interneurons become hyperexcitable at ~16 weeks of age, when no changes are observed yet in the intrinsic properties of pyramidal cells. This hyperexcitable state of PV interneurons coincides with increased inhibitory transmission onto hippocampal pyramidal neurons and deficits in spatial learning and memory. We show that treatment aimed at preventing PV interneurons from becoming hyperexcitable is sufficient to restore PV interneuron properties to wild-type levels, reduce inhibitory input onto pyramidal cells, and rescue memory deficits in APP/PS1 mice. Importantly, we demonstrate that early intervention aimed at restoring PV interneuron activity has long-term beneficial effects on memory and hippocampal network activity, and reduces amyloid plaque deposition, a hallmark of AD pathology. Taken together, these findings suggest that early treatment of PV interneuron hyperactivity might be clinically relevant in preventing memory decline and delaying AD progression.


Asunto(s)
Enfermedad de Alzheimer , Parvalbúminas , Animales , Modelos Animales de Enfermedad , Interneuronas , Trastornos de la Memoria , Ratones , Ratones Transgénicos
7.
PLoS Comput Biol ; 16(7): e1008087, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32701953

RESUMEN

The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of APs recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task.


Asunto(s)
Potenciales de Acción , Segmento Inicial del Axón/fisiología , Axones/fisiología , Neuronas/fisiología , Algoritmos , Animales , Corteza Cerebral/patología , Biología Computacional , Simulación por Computador , Dendritas/fisiología , Humanos , Imagenología Tridimensional , Modelos Lineales , Aprendizaje Automático , Modelos Neurológicos , Neocórtex/fisiología , Canales de Potasio/fisiología , Ratas
8.
Cereb Cortex ; 30(7): 4246-4256, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191258

RESUMEN

The molecular processes underlying the aging-related decline in cognitive performance and memory observed in humans are poorly understood. Studies in rodents have shown a decrease in N-methyl-D-aspartate receptors (NMDARs) that contain the GluN2B subunit in aging synapses, and this decrease is correlated with impaired memory functions. However, the age-dependent contribution of GluN2B-containing receptors to synaptic transmission in human cortical synapses has not been previously studied. We investigated the synaptic contribution of GluN2A and GluN2B-containing NMDARs in adult human neurons using fresh nonpathological temporal cortical tissue resected during neurosurgical procedures. The tissue we obtained fulfilled quality criteria by the absence of inflammation markers and proteomic degradation. We show an age-dependent decline in the NMDA/AMPA receptor ratio in adult human temporal cortical synapses. We demonstrate that GluN2B-containing NMDA receptors contribute to synaptic responses in the adult human brain with a reduced contribution in older individuals. With previous evidence demonstrating the critical role of synaptic GluN2B in regulating synaptic strength and memory storage in mice, this progressive reduction of GluN2B in the human brain during aging may underlie a molecular mechanism in the age-related decline in cognitive abilities and memory observed in humans.


Asunto(s)
Envejecimiento/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Lóbulo Temporal/metabolismo , Adulto , Anciano , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores AMPA/metabolismo , Lóbulo Temporal/citología , Adulto Joven
9.
J Neurosci ; 39(44): 8645-8663, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31511428

RESUMEN

Neurons in parasubiculum (PaS), presubiculum (PrS), and medial entorhinal cortex (MEC) code for place (grid cells) and head direction. Directional input has been shown to be important for stable grid cell properties in MEC, and PaS and PrS have been postulated to provide this information to MEC. In line with this, head direction cells in those brain areas are present at postnatal day 11 (P11), having directional tuning that stabilizes shortly after eye opening, which is before premature grid cells emerge in MEC at P16. Whether functional connectivity between these structures exists at those early postnatal stages is unclear. Using anatomical tracing, voltage-sensitive dye imaging and single-cell patch recordings in female and male rat brain slices between P2 and P61, we determined when the pathways from PaS and PrS to MEC emerge, become functional, and how they develop. Anatomical connections from PaS and PrS to superficial MEC emerge between P4 and P6. Monosynaptic connectivity from PaS and PrS to superficial MEC was measurable from P9 to P10 onward, whereas connectivity with deep MEC was measurable from P11 to P12. From P14/P15 on, reactivity of MEC neurons to parasubicular and presubicular inputs becomes adult-like and continues to develop until P28-P30. The maturation of the efficacy of both inputs between P9 and P21 is paralleled by maturation of morphological properties, changes in intrinsic properties of MEC principal neurons, and changes in the GABAergic network of MEC. In conclusion, synaptic projections from PaS and PrS to MEC become functional and adult-like before the emergence of grid cells in MEC.SIGNIFICANCE STATEMENT Head direction information, crucial for grid cells in medial entorhinal cortex (MEC), is thought to enter MEC via parasubiculum (PaS) and presubiculum (PrS). Unraveling the development of functional connections between PaS, PrS, and MEC is key to understanding how spatial navigation, an important cognitive function, may evolve. To gain insight into the development, we used anatomical tracing techniques, voltage-sensitive dye imaging, and single-cell recordings. The combined data led us to conclude that synaptic projections from PaS and PrS to MEC become functional and adult-like before eye opening, allowing crucial head direction information to influence place encoding before the emergence of grid cells in rat MEC.


Asunto(s)
Corteza Entorrinal/crecimiento & desarrollo , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Animales , Corteza Entorrinal/citología , Femenino , Células de Red/fisiología , Hipocampo/citología , Masculino , Potenciales de la Membrana , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Neuronas/citología , Ratas Long-Evans
10.
J Neurosci ; 39(37): 7332-7343, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31332000

RESUMEN

The posterior parietal cortex (PPC) in rodents is reciprocally connected to primary somatosensory and vibrissal motor cortices. The PPC neuronal circuitry could thus encode and potentially integrate incoming somatosensory information and whisker motor output. However, the information encoded across PPC layers during refined sensorimotor behavior remains largely unknown. To uncover the sensorimotor features represented in PPC during voluntary whisking and object touch, we performed loose-patch single-unit recordings and extracellular recordings of ensemble activity, covering all layers of PPC in anesthetized and awake, behaving male rats. First, using single-cell receptive field mapping, we revealed the presence of coarse somatotopy along the mediolateral axis in PPC. Second, we found that spiking activity was modulated during exploratory whisking in layers 2-4 and layer 6, but not in layer 5 of awake, behaving rats. Population spiking activity preceded actual movement, and whisker trajectory endpoints could be decoded by population spiking, suggesting that PPC is involved in movement planning. Finally, population spiking activity further increased in response to active whisker touch but only in PPC layers 2-4. Thus, we find layer-specific processing, which emphasizes the computational role of PPC during whisker sensorimotor behavior.SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) is thought to merge information on motor output and sensory input to orchestrate interaction with the environment, but the function of different PPC microcircuit components is poorly understood. We recorded neuronal activity in rat PPC during sensorimotor behavior involving motor and sensory pathways. We uncovered that PPC layers have dedicated function: motor and sensory information is merged in layers 2-4; layer 6 predominantly represents motor information. Collectively, PPC activity predicts future motor output, thus entailing a motor plan. Our results are important for understanding how PPC computationally processes motor output and sensory input. This understanding may facilitate decoding of brain activity when using brain-machine interfaces to overcome loss of function after, for instance, spinal cord injury.


Asunto(s)
Movimiento/fisiología , Lóbulo Parietal/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Vibrisas/fisiología , Animales , Masculino , Lóbulo Parietal/citología , Ratas , Ratas Wistar , Corteza Somatosensorial/citología , Vibrisas/citología , Vibrisas/inervación
11.
EMBO J ; 35(11): 1236-50, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056679

RESUMEN

Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Munc18/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica , Animales , Estimulación Eléctrica , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Hipocampo/fisiología , Humanos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación , Embarazo , Ratas Wistar , Estrés Psicológico/metabolismo
12.
PLoS Biol ; 15(5): e1002605, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28549068

RESUMEN

In the vertebrate nervous system, myelination of axons for rapid impulse propagation requires the synthesis of large amounts of lipids and proteins by oligodendrocytes and Schwann cells. Myelin membranes are thought to be cell-autonomously assembled by these axon-associated glial cells. Here, we report the surprising finding that in normal brain development, a substantial fraction of the lipids incorporated into central nervous system (CNS) myelin are contributed by astrocytes. The oligodendrocyte-specific inactivation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), an essential coactivator of the transcription factor SREBP and thus of lipid biosynthesis, resulted in significantly retarded CNS myelination; however, myelin appeared normal at 3 months of age. Importantly, embryonic deletion of the same gene in astrocytes, or in astrocytes and oligodendrocytes, caused a persistent hypomyelination, as did deletion from astrocytes during postnatal development. Moreover, when astroglial lipid synthesis was inhibited, oligodendrocytes began incorporating circulating lipids into myelin membranes. Indeed, a lipid-enriched diet was sufficient to rescue hypomyelination in these conditional mouse mutants. We conclude that lipid synthesis by oligodendrocytes is heavily supplemented by astrocytes in vivo and that horizontal lipid flux is a major feature of normal brain development and myelination.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Astrocitos/patología , Astrocitos/ultraestructura , Biomarcadores/metabolismo , Cruzamientos Genéticos , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/prevención & control , Dieta Alta en Grasa , Acido Graso Sintasa Tipo I/metabolismo , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Mutación , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/patología , Oligodendroglía/ultraestructura , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
13.
J Neurosci ; 38(3): 710-722, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29217685

RESUMEN

Speech comprehension is preserved up to a threefold acceleration, but deteriorates rapidly at higher speeds. Current models posit that perceptual resilience to accelerated speech is limited by the brain's ability to parse speech into syllabic units using δ/θ oscillations. Here, we investigated whether the involvement of neuronal oscillations in processing accelerated speech also relates to their scale-free amplitude modulation as indexed by the strength of long-range temporal correlations (LRTC). We recorded MEG while 24 human subjects (12 females) listened to radio news uttered at different comprehensible rates, at a mostly unintelligible rate and at this same speed interleaved with silence gaps. δ, θ, and low-γ oscillations followed the nonlinear variation of comprehension, with LRTC rising only at the highest speed. In contrast, increasing the rate was associated with a monotonic increase in LRTC in high-γ activity. When intelligibility was restored with the insertion of silence gaps, LRTC in the δ, θ, and low-γ oscillations resumed the low levels observed for intelligible speech. Remarkably, the lower the individual subject scaling exponents of δ/θ oscillations, the greater the comprehension of the fastest speech rate. Moreover, the strength of LRTC of the speech envelope decreased at the maximal rate, suggesting an inverse relationship with the LRTC of brain dynamics when comprehension halts. Our findings show that scale-free amplitude modulation of cortical oscillations and speech signals are tightly coupled to speech uptake capacity.SIGNIFICANCE STATEMENT One may read this statement in 20-30 s, but reading it in less than five leaves us clueless. Our minds limit how much information we grasp in an instant. Understanding the neural constraints on our capacity for sensory uptake is a fundamental question in neuroscience. Here, MEG was used to investigate neuronal activity while subjects listened to radio news played faster and faster until becoming unintelligible. We found that speech comprehension is related to the scale-free dynamics of δ and θ bands, whereas this property in high-γ fluctuations mirrors speech rate. We propose that successful speech processing imposes constraints on the self-organization of synchronous cell assemblies and their scale-free dynamics adjusts to the temporal properties of spoken language.


Asunto(s)
Encéfalo/fisiología , Comprensión/fisiología , Neuronas/fisiología , Percepción del Habla/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino
14.
Ann Neurol ; 83(3): 636-649, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29466841

RESUMEN

OBJECTIVE: Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS: We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS: An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION: Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.


Asunto(s)
Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Proteínas de la Membrana/metabolismo , Potasio/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Quistes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Proteínas de la Membrana/genética , Ratones Transgénicos , Mutación/genética , Convulsiones/genética , Convulsiones/metabolismo
15.
Eur J Neurosci ; 48(8): 2674-2683, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28858404

RESUMEN

Neuronal oscillations exhibit complex amplitude fluctuations with autocorrelations that persist over thousands of oscillatory cycles. Such long-range temporal correlations (LRTC) are thought to reflect neuronal systems poised near a critical state, which would render them capable of quick reorganization and responsive to changing processing demands. When we concentrate, however, the influence of internal and external sources of distraction is better reduced, suggesting that neuronal systems involved with sustained attention could benefit from a shift toward the less volatile sub-critical state. To test these ideas, we recorded electroencephalography (EEG) from healthy volunteers during eyes-closed rest and during a sustained attention task requiring a speeded response to images deviating in their presentation duration. We show that for oscillations recorded during rest, high levels of alpha-band LRTC in the sensorimotor region predicted good reaction-time performance in the attention task. During task execution, however, fast reaction times were associated with high-amplitude beta and gamma oscillations with low LRTC. Finally, we show that reduced LRTC during the attention task compared to the rest condition correlates with better performance, while increased LRTC of oscillations from rest to attention is associated with reduced performance. To our knowledge, this is the first empirical evidence that 'resting-state criticality' of neuronal networks predicts swift behavioral responses in a sensorimotor task, and that steady attentive processing of visual stimuli requires brain dynamics with suppressed temporal complexity.


Asunto(s)
Atención/fisiología , Ritmo beta/fisiología , Ritmo Gamma/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Percepción Visual/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Adulto Joven
16.
Hum Brain Mapp ; 39(4): 1825-1838, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29331064

RESUMEN

Our focus of attention naturally fluctuates between different sources of information even when we desire to focus on a single object. Focused attention (FA) meditation is associated with greater control over this process, yet the neuronal mechanisms underlying this ability are not entirely understood. Here, we hypothesize that the capacity of attention to transiently focus and swiftly change relates to the critical dynamics emerging when neuronal systems balance at a point of instability between order and disorder. In FA meditation, however, the ability to stay focused is trained, which may be associated with a more homogeneous brain state. To test this hypothesis, we applied analytical tools from criticality theory to EEG in meditation practitioners and meditation-naïve participants from two independent labs. We show that in practitioners-but not in controls-FA meditation strongly suppressed long-range temporal correlations (LRTC) of neuronal oscillations relative to eyes-closed rest with remarkable consistency across frequency bands and scalp locations. The ability to reduce LRTC during meditation increased after one year of additional training and was associated with the subjective experience of fully engaging one's attentional resources, also known as absorption. Sustained practice also affected normal waking brain dynamics as reflected in increased LRTC during an eyes-closed rest state, indicating that brain dynamics are altered beyond the meditative state. Taken together, our findings suggest that the framework of critical brain dynamics is promising for understanding neuronal mechanisms of meditative states and, specifically, we have identified a clear electrophysiological correlate of the FA meditation state.


Asunto(s)
Atención/fisiología , Ondas Encefálicas/fisiología , Encéfalo/fisiología , Meditación , Adulto , Estudios de Cohortes , Emociones/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Práctica Psicológica , Descanso , Procesamiento de Señales Asistido por Computador , Pensamiento/fisiología , Factores de Tiempo , Adulto Joven
17.
Cereb Cortex ; 27(11): 5398-5414, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968789

RESUMEN

There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 µm2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 µm). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 MΩ, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth-independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as "slim-tufted" and "profuse-tufted" HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs.


Asunto(s)
Células Piramidales/citología , Células Piramidales/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Adulto , Animales , Neoplasias Encefálicas/cirugía , Tamaño de la Célula , Epilepsia/cirugía , Humanos , Imagenología Tridimensional/métodos , Ratones , Persona de Mediana Edad , Modelos Estadísticos , Técnicas de Placa-Clamp , Análisis de Componente Principal , Procesamiento de Señales Asistido por Computador , Especificidad de la Especie , Lóbulo Temporal/cirugía , Técnicas de Cultivo de Tejidos , Adulto Joven
18.
Glia ; 65(4): 670-682, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28168742

RESUMEN

The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682.


Asunto(s)
Astrocitos/metabolismo , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Metabolismo de los Lípidos/fisiología , Sinapsis/fisiología , Animales , Astrocitos/ultraestructura , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/ultraestructura , Tinción con Nitrato de Plata , Sinapsis/ultraestructura , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
19.
Angiogenesis ; 20(4): 533-546, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28699046

RESUMEN

BACKGROUND: Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and migration of cells in the brain of mice, however, with limited imaging depth. To enable comprehensive analysis of GBM and the brain microenvironment, in-depth 3D imaging methods are needed. Here, we employed methods for optical tissue clearing prior to 3D microscopy to visualize the brain microvasculature and routes of invasion of GBM cells. METHODS: We present a workflow for ex vivo imaging of optically cleared brain tumor tissues and subsequent computational modeling. This workflow was used for quantification of the microvasculature in relation to nuclear or cellular density in healthy mouse brain tissues and in human orthotopic, infiltrative GBM8 and E98 glioblastoma models. RESULTS: Ex vivo cleared mouse brain tissues had a >10-fold imaging depth as compared to intravital imaging of mouse brain in vivo. Imaging of optically cleared brain tissue allowed quantification of the 3D microvascular characteristics in healthy mouse brains and in tissues with diffuse, infiltrative growing GBM8 brain tumors. Detailed 3D visualization revealed the organization of tumor cells relative to the vasculature, in both gray matter and white matter regions, and patterns of multicellular GBM networks collectively invading the brain parenchyma. CONCLUSIONS: Optical tissue clearing opens new avenues for combined quantitative and 3D microscopic analysis of the topographical relationship between GBM cells and their microenvironment.


Asunto(s)
Neoplasias Encefálicas/patología , Imagenología Tridimensional , Fenómenos Ópticos , Microambiente Tumoral , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Femenino , Fluorescencia , Glioblastoma/irrigación sanguínea , Glioblastoma/patología , Microscopía Intravital , Lectinas/metabolismo , Ratones Desnudos , Microvasos/patología , Neovascularización Patológica/patología , Fotones
20.
PLoS Biol ; 12(11): e1002007, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25422947

RESUMEN

Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.


Asunto(s)
Neocórtex/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Adolescente , Adulto , Animales , Humanos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA