Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Haematologica ; 107(11): 2617-2629, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35484649

RESUMEN

CD6 is a co-stimulatory receptor expressed on T cells that binds activated leukocyte cell adhesion molecule (ALCAM), expressed on antigen presenting cells, epithelial and endothelial tissues. The CD6-ALCAM pathway plays an integral role in modulating T-cell activation, proliferation, and trafficking. In this study we examined expression of CD6 by reconstituting T cells in 95 patients after allogeneic cell transplantation and evaluated the effects of itolizumab, an anti- CD6 monoclonal antibody, on T-cell activation. CD6 T cells reconstituted early after transplant with CD4 regulatory T cells (Treg)-expressing lower levels of CD6 compared to conventional CD4 T cells (Tcon) and CD8 T cells. After onset of acute graft-versus-host disease (aGvHD), CD6 expression was further reduced in Treg and CD8 T cells compared to healthy donors, while no difference was observed for Tcon. ALCAM expression was highest in plasmacytoid dendritic cells (pDC), lowest in myeloid dendritic cells (mDC) and intermediate in monocytes and was generally increased after aGvHD onset. Itolizumab inhibited CD4 and CD8 T-cell activation and proliferation in preGvHD samples, but inhibition was less prominent in samples collected after aGvHD onset, especially for CD8 T cells. Functional studies showed that itolizumab did not mediate direct cytolytic activity or antibody-dependent cytotoxicity in vitro. However, itolizumab efficiently abrogated the costimulatory activity of ALCAM on T-cell proliferation, activation and maturation. Our results identify the CD6-ALCAM pathway as a potential target for aGvHD control and a phase I/II study using itolizumab as first line treatment in combination with steroids for patients with aGvHD is currently ongoing (clinicaltrials gov. Identifier: NCT03763318).


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado , Trasplante de Células Madre Hematopoyéticas , Humanos , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Antígenos de Diferenciación de Linfocitos T , Activación de Linfocitos , Anticuerpos Monoclonales/farmacología , Proteínas Fetales , Antígenos CD , Moléculas de Adhesión Celular Neuronal
2.
ACS Cent Sci ; 10(5): 1105-1114, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799654

RESUMEN

Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement, functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem samples from Huntington's disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2 holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human PET.

3.
ACS Chem Neurosci ; 13(24): 3641-3660, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36473177

RESUMEN

Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Proteómica , Enfermedades Neurodegenerativas/metabolismo , Neuroimagen , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA