Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 5(8): e209, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17683199

RESUMEN

Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 A. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Biosíntesis de Proteínas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Ribosomas/ultraestructura , Regiones no Traducidas 5' , Proteínas Algáceas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
2.
Curr Opin Biotechnol ; 18(2): 126-33, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17317144

RESUMEN

Protein-based therapeutics are the fastest growing sector of drug development, mainly because of the high sensitivity and specificity of these molecules. Their high specificity leads to few side effects and excellent success rates in drug development. However, the inherent complexity of these molecules restricts their synthesis to living cells, making recombinant proteins expensive to produce. In addition to therapeutic uses, recombinant proteins also have a variety of industrial applications and are important research reagents. Eukaryotic algae offer the potential to produce high yields of recombinant proteins more rapidly and at much lower cost than traditional cell culture. Additionally, transgenic algae can be grown in complete containment, reducing any risk of environmental contamination. This system might also be used for the oral delivery of therapeutic proteins, as green algae are edible and do not contain endotoxins or human viral or prion contaminants.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Chlamydophila/fisiología , Cloroplastos/fisiología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Transfección/métodos , Virus/genética , Animales , Vectores Genéticos/genética
3.
Plant Biotechnol J ; 5(3): 402-12, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17359495

RESUMEN

We have engineered the chloroplast of eukaryotic algae to produce a number of recombinant proteins, including human monoclonal antibodies, but, to date, have achieved expression to only 0.5% of total protein. Here, we show that, by engineering the mammalian coding region of bovine mammary-associated serum amyloid (M-SAA) as a direct replacement for the chloroplast psbA coding region, we can achieve expression of recombinant protein above 5% of total protein. Chloroplast-expressed M-SAA accumulates predominantly as a soluble protein, contains the correct amino terminal sequence and has little or no post-translational modification. M-SAA is found in mammalian colostrum and stimulates the production of mucin in the gut, acting in the prophylaxis of bacterial and viral infections. Chloroplast-expressed and purified M-SAA is able to stimulate mucin production in human gut epithelial cell lines. As Chlamydomonas reinhardtii is an edible alga, production of therapeutic proteins in this organism offers the potential for oral delivery of gut-active proteins, such as M-SAA.


Asunto(s)
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Proteína Amiloide A Sérica/genética , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Genoma de Protozoos , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Fotosíntesis , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
J Mol Biol ; 351(2): 266-79, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-16005888

RESUMEN

We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Ribosomas/química , Proteínas Algáceas/química , Animales , Arabidopsis/metabolismo , Chlorophyta/metabolismo , Biología Computacional , Secuencia Conservada , Microscopía por Crioelectrón , Citoplasma/metabolismo , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Etiquetas de Secuencia Expresada , Análisis de Fourier , Genoma , Modelos Moleculares , Sistemas de Lectura Abierta , Péptidos/química , Proteómica , ARN Ribosómico/química , Ratas
5.
Photosynth Res ; 94(2-3): 359-74, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17661159

RESUMEN

Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.


Asunto(s)
Cloroplastos/metabolismo , Biosíntesis de Proteínas , ARN del Cloroplasto/genética , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
6.
Proc Natl Acad Sci U S A ; 104(18): 7705-10, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17460045

RESUMEN

The smallest known eukaryotes, at approximately 1-mum diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size.


Asunto(s)
Chlorophyta/genética , Células Eucariotas/clasificación , Células Eucariotas/metabolismo , Genoma/genética , Plancton/clasificación , Plancton/genética , Adaptación Fisiológica , Evolución Biológica , Núcleo Celular/genética , Chlorophyta/metabolismo , Cromosomas/genética , Ambiente , Transferencia de Gen Horizontal , Metales/metabolismo , Datos de Secuencia Molecular , Plancton/metabolismo , Selenoproteínas/metabolismo , Vitaminas/metabolismo
7.
Science ; 318(5848): 245-50, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17932292

RESUMEN

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.


Asunto(s)
Proteínas Algáceas/genética , Proteínas Algáceas/fisiología , Evolución Biológica , Chlamydomonas reinhardtii/genética , Genoma , Animales , Chlamydomonas reinhardtii/fisiología , Cloroplastos/metabolismo , Biología Computacional , ADN de Algas/genética , Flagelos/metabolismo , Genes , Genómica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Datos de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Filogenia , Plantas/genética , Proteoma , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA