Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 626(7998): 347-356, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267576

RESUMEN

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Asunto(s)
Agresión , Reacción de Prevención , Hipotálamo , Vías Nerviosas , Neuronas , Oxitocina , Aprendizaje Social , Animales , Ratones , Agresión/fisiología , Reacción de Prevención/fisiología , Señales (Psicología) , Miedo/fisiología , Hipotálamo/citología , Hipotálamo/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Conducta Social , Aprendizaje Social/fisiología , Núcleo Supraóptico/citología , Núcleo Supraóptico/metabolismo , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo , Plasticidad Neuronal
2.
J Neurosci ; 42(23): 4725-4736, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577554

RESUMEN

Physical exercise improves motor performance in individuals with Parkinson's disease and elevates mood in those with depression. Although underlying factors have not been identified, clues arise from previous studies showing a link between cognitive benefits of exercise and increases in brain-derived neurotrophic factor (BDNF). Here, we investigated the influence of voluntary wheel-running exercise on BDNF levels in the striatum of young male wild-type (WT) mice, and on the striatal release of a key motor-system transmitter, dopamine (DA). Mice were allowed unlimited access to a freely rotating wheel (runners) or a locked wheel (controls) for 30 d. Electrically evoked DA release was quantified in ex vivo corticostriatal slices from these animals using fast-scan cyclic voltammetry. We found that exercise increased BDNF levels in dorsal striatum (dStr) and increased DA release in dStr and in nucleus accumbens core and shell. Increased DA release was independent of striatal acetylcholine (ACh), and persisted after a week of rest. We tested a role for BDNF in the influence of exercise on DA release using mice that were heterozygous for BDNF deletion (BDNF+/-). In contrast to WT mice, evoked DA release did not differ between BDNF+/- runners and controls. Complementary pharmacological studies using a tropomyosin receptor kinase B (TrkB) agonist in WT mouse slices showed that TrkB receptor activation also increased evoked DA release throughout striatum in an ACh-independent manner. Together, these data support a causal role for BDNF in exercise-enhanced striatal DA release and provide mechanistic insight into the beneficial effects of exercise in neuropsychiatric disorders, including Parkinson's, depression, and anxiety.SIGNIFICANCE STATEMENT Exercise has been shown to improve movement and cognition in humans and rodents. Here, we report that voluntary exercise for 30 d leads to an increase in evoked DA release throughout the striatum and an increase in BDNF in the dorsal (motor) striatum. The increase in DA release appears to require BDNF, indicated by the absence of DA release enhancement with running in BDNF+/- mice. Activation of BDNF receptors using a pharmacological agonist was also shown to boost DA release. Together, these data support a necessary and sufficient role for BDNF in exercise-enhanced DA release and provide mechanistic insight into the reported benefits of exercise in individuals with dopamine-linked neuropsychiatric disorders, including Parkinson's disease and depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dopamina , Enfermedad de Parkinson , Acetilcolina/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Cuerpo Estriado , Dopamina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens
3.
Alzheimers Dement ; 19(11): 5048-5073, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186121

RESUMEN

INTRODUCTION: Cerebrovascular pathology is an early and causal hallmark of Alzheimer's disease (AD), in need of effective therapies. METHODS: Based on the success of our previous in vitro studies, we tested for the first time in a model of AD and cerebral amyloid angiopathy (CAA), the carbonic anhydrase inhibitors (CAIs) methazolamide and acetazolamide, Food and Drug Administration-approved against glaucoma and high-altitude sickness. RESULTS: Both CAIs reduced cerebral, vascular, and glial amyloid beta (Aß) accumulation and caspase activation, diminished gliosis, and ameliorated cognition in TgSwDI mice. The CAIs also improved microvascular fitness and induced protective glial pro-clearance pathways, resulting in the reduction of Aß deposition. Notably, we unveiled that the mitochondrial carbonic anhydrase-VB (CA-VB) is upregulated in TgSwDI brains, CAA and AD+CAA human subjects, and in endothelial cells upon Aß treatment. Strikingly, CA-VB silencing specifically reduces Aß-mediated endothelial apoptosis. DISCUSSION: This work substantiates the potential application of CAIs in clinical trials for AD and CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Estados Unidos , Humanos , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Angiopatía Amiloide Cerebral/tratamiento farmacológico , Angiopatía Amiloide Cerebral/patología , Enfermedad de Alzheimer/patología , Cognición
4.
Learn Mem ; 21(9): 488-97, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25135197

RESUMEN

Safety signals provide "relief" through predicting the absence of an aversive event. At issue is whether these signals also act as instrumental reinforcers. Four experiments were conducted using a free-operant lever-press avoidance paradigm in which each press avoided shock and was followed by the presentation of a 5-sec auditory safety signal. When given a choice between two levers in Experiment 1, both avoiding shock, rats preferentially responded on the lever that produced the safety signal as feedback, even when footshock was omitted. Following avoidance training with a single lever in Experiment 2, removal of the signal led to a decrease in avoidance responses and an increase in responses during the safety period normally denoted by the signal. These behavioral changes demonstrate the dual conditioned reinforcing and fear inhibiting properties of the safety signal. The associative processes that support the reinforcing properties of a safety signal were tested using a novel revaluation procedure. Prior experience of systemic morphine during safety signal presentations resulted in an increased rate of avoidance responses to produce the safety signal during a drug-free extinction test, a finding not seen with d-amphetamine in Experiment 3. Morphine revaluation of the safety signal was repeated in Experiment 4 followed by a drug-free extinction test in which responses did not produce the signal for the first 10 min of the session. Instrumental avoidance in the absence of the signal was shown to be insensitive to prior signal revaluation, suggesting that the signal reinforces free-operant avoidance behavior through a habit-like mechanism.


Asunto(s)
Reacción de Prevención , Condicionamiento Operante , Refuerzo en Psicología , Estimulación Acústica , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Dextroanfetamina/farmacología , Electrochoque/psicología , Extinción Psicológica , Retroalimentación Psicológica , Masculino , Ratas , Seguridad
5.
Int J Neuropsychopharmacol ; 18(2)2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25552430

RESUMEN

BACKGROUND: N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. METHODS: Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. RESULTS: Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. CONCLUSIONS: These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function.


Asunto(s)
Atención , Encéfalo/patología , Esquizofrenia/patología , Psicología del Esquizofrénico , Percepción Visual , Animales , Percepción Auditiva , Modelos Animales de Enfermedad , Sustancia Gris/patología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Fenciclidina , Inhibición Prepulso , Ratas , Reflejo de Sobresalto
6.
J Neurosci ; 31(17): 6398-404, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21525280

RESUMEN

The orbitofrontal cortex (OFC) is implicated in a variety of adaptive decision-making processes. Human studies suggest that there is a functional dissociation between medial and lateral OFC (mOFC and lOFC, respectively) subregions when performing certain choice procedures. However, little work has examined the functional consequences of manipulations of OFC subregions on decision making in rodents. In the present experiments, impulsive choice was assessed by evaluating intolerance to delayed, but economically optimal, reward options using a delay-discounting paradigm. Following initial delay-discounting training, rats received bilateral neurotoxic or sham lesions targeting whole OFC (wOFC) or restricted to either mOFC or lOFC subregions. A transient flattening of delay-discounting curves was observed in wOFC-lesioned animals relative to shams--differences that disappeared with further training. Stable, dissociable effects were found when lesions were restricted to OFC subregions; mOFC-lesioned rats showed increased, whereas lOFC-lesioned rats showed decreased, preference for the larger-delayed reward relative to sham-controls--a pattern that remained significant during retraining after all delays were removed. When locations of levers leading to small-immediate versus large-delayed rewards were reversed, wOFC- and lOFC-lesioned rats showed retarded, whereas mOFC-lesioned rats showed accelerated, trajectories for reversal of lever preference. These results provide the first direct evidence for dissociable functional roles of the mOFC and lOFC for impulsive choice in rodents. The findings are consistent with recent human functional imaging studies and suggest that functions of mOFC and lOFC subregions may be evolutionarily conserved and contribute differentially to decision-making processes.


Asunto(s)
Conducta de Elección/fisiología , Conducta Impulsiva/fisiopatología , Corteza Prefrontal/lesiones , Corteza Prefrontal/fisiología , Animales , Conducta Animal , Condicionamiento Operante/fisiología , Lateralidad Funcional/fisiología , Masculino , Corteza Prefrontal/anatomía & histología , Ratas , Recompensa , Factores de Tiempo
7.
J Neurosci ; 31(25): 9254-63, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697375

RESUMEN

Defining the neural and neurochemical substrates of response inhibition is of crucial importance for the study and treatment of pathologies characterized by impulsivity such as attention-deficit/hyperactivity disorder and addiction. The stop-signal task (SST) is one of the most popular paradigms used to study the speed and efficacy of inhibitory processes in humans and other animals. Here we investigated the effect of temporarily inactivating different prefrontal subregions in the rat by means of muscimol microinfusions on SST performance. We found that dorsomedial prefrontal cortical areas are important for inhibiting an already initiated response. We also investigated the possible neural substrates of the selective noradrenaline reuptake inhibitor atomoxetine via its local microinfusion into different subregions of the rat prefrontal cortex. Our results show that both orbitofrontal and dorsal prelimbic cortices mediate the beneficial effects of atomoxetine on SST performance. To assess the neurochemical specificity of these effects, we infused the α2-adrenergic agonist guanfacine and the D(1)/D(2) antagonist α-flupenthixol in dorsal prelimbic cortex to interfere with noradrenergic and dopaminergic neurotransmission, respectively. Guanfacine, which modulates noradrenergic neurotransmission, selectively impaired stopping, whereas blocking dopaminergic receptors by α-flupenthixol infusion prolonged go reaction time only, confirming the important role of noradrenergic neurotransmission in response inhibition. These results show that, similar to humans, distinct networks play important roles during SST performance in the rat and that they are differentially modulated by noradrenergic and dopaminergic neurotransmission. This study advances our understanding of the neuroanatomical and neurochemical determinants of impulsivity, which are relevant for a range of psychiatric disorders.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Conducta Impulsiva/fisiopatología , Inhibición Neural , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor , Animales , Masculino , Ratas
8.
J Neurosci ; 31(20): 7349-56, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593319

RESUMEN

Dopamine and dopamine-receptor function are often implicated in behavioral inhibition, and deficiencies within behavioral inhibition processes linked to attention deficit/hyperactivity disorder (ADHD), schizophrenia, obsessive-compulsive disorder, and drug addiction. In the stop-signal task, which measures the speed of the process of inhibition [stop-signal reaction time (SSRT)], psychostimulant-related improvement of SSRT in ADHD is linked with dopamine function. However, the precise nature of dopaminergic control over SSRT remains unclear. This study examined region- and receptor-specific modulation of SSRT in the rat using direct infusions of the dopamine D1 receptor (DRD1) antagonist SCH 23390 or dopamine D2 receptor (DRD2) antagonist sulpiride into the dorsomedial striatum (DMStr) or nucleus accumbens core (NAcbC). DRD1 and DRD2 antagonists had contrasting effects on SSRT that were specific to the DMStr. SCH 23390 decreased SSRT with little effect on the go response. Conversely, sulpiride increased SSRT but also increased go-trial reaction time and reduced trial completion at the highest doses. These results suggest that DRD1 and DRD2 function within the DMStr, but not the NAcbC, may act to balance behavioral inhibition in a manner that is independent of behavioral activation.


Asunto(s)
Conducta Animal/fisiología , Cuerpo Estriado/fisiología , Inhibición Psicológica , Núcleo Accumbens/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/farmacología , Cuerpo Estriado/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2 , Masculino , Núcleo Accumbens/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Tiempo de Reacción/efectos de los fármacos , Receptores de Dopamina D1/antagonistas & inhibidores , Sulpirida/farmacología
9.
Commun Biol ; 4(1): 420, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772096

RESUMEN

Atherosclerosis and obesity share pathological features including inflammation mediated by innate and adaptive immune cells. LXRα plays a central role in the transcription of inflammatory and metabolic genes. LXRα is modulated by phosphorylation at serine 196 (LXRα pS196), however, the consequences of LXRα pS196 in hematopoietic cell precursors in atherosclerosis and obesity have not been investigated. To assess the importance of LXRα phosphorylation, bone marrow from LXRα WT and S196A mice was transplanted into Ldlr-/- mice, which were fed a western diet prior to evaluation of atherosclerosis and obesity. Plaques from S196A mice showed reduced inflammatory monocyte recruitment, lipid accumulation, and macrophage proliferation. Expression profiling of CD68+ and T cells from S196A mouse plaques revealed downregulation of pro-inflammatory genes and in the case of CD68+ upregulation of mitochondrial genes characteristic of anti-inflammatory macrophages. Furthermore, S196A mice had lower body weight and less visceral adipose tissue; this was associated with transcriptional reprograming of the adipose tissue macrophages and T cells, and resolution of inflammation resulting in less fat accumulation within adipocytes. Thus, reducing LXRα pS196 in hematopoietic cells attenuates atherosclerosis and obesity by reprogramming the transcriptional activity of LXRα in macrophages and T cells to promote an anti-inflammatory phenotype.


Asunto(s)
Aterosclerosis/genética , Células Madre Hematopoyéticas/inmunología , Inflamación/genética , Receptores X del Hígado/genética , Obesidad/genética , Animales , Aterosclerosis/inmunología , Trasplante de Células Madre Hematopoyéticas , Inflamación/inmunología , Receptores X del Hígado/metabolismo , Masculino , Ratones , Obesidad/inmunología , Fosforilación
10.
Sci Rep ; 10(1): 6684, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317713

RESUMEN

Impulsivity describes the tendency to act prematurely without appropriate foresight and is symptomatic of a number of neuropsychiatric disorders. Although a number of genes for impulsivity have been identified, no study to date has carried out an unbiased, genome-wide approach to identify genetic markers associated with impulsivity in experimental animals. Herein we report a linkage study of a six-generational pedigree of adult rats phenotyped for one dimension of impulsivity, namely premature responding on the five-choice serial reaction time task, combined with genome wide sequencing and transcriptome analysis to identify candidate genes associated with the expression of the impulsivity trait. Premature responding was found to be heritable (h2 = 13-16%), with significant linkage (LOD 5.2) identified on chromosome 1. Fine mapping of this locus identified a number of polymorphic candidate genes, however only one, beta haemoglobin, was differentially expressed in both the founder strain and F6 generation. These findings provide novel insights into the genetic substrates and putative neurobiological mechanisms of impulsivity with broader translational relevance for impulsivity-related disorders in humans.


Asunto(s)
Cromosomas de los Mamíferos/genética , Conducta Impulsiva/fisiología , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Animales , Femenino , Regulación de la Expresión Génica , Ligamiento Genético , Genoma , Masculino , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Análisis y Desempeño de Tareas
11.
Psychopharmacology (Berl) ; 236(8): 2307-2323, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31218428

RESUMEN

RATIONALE: Dopamine D2-like receptors (D2R) are important drug targets in schizophrenia and Parkinson's disease, but D2R ligands also cause cognitive inflexibility such as poor reversal learning. The specific role of D2R in reversal learning remains unclear. OBJECTIVES: We tested the hypotheses that D2R agonism impairs reversal learning by blocking negative feedback and that antagonism of D1-like receptors (D1R) impairs learning from positive feedback. METHODS: Male Lister Hooded rats were trained on a novel visual reversal learning task. Performance on "probe trials", during which the correct or incorrect stimulus was presented with a third, probabilistically rewarded (50% of trials) and therefore intermediate stimulus, revealed individual learning curves for the processes of positive and negative feedback. The effects of D2R and D1R agonists and antagonists were evaluated. A separate cohort was tested on a spatial probabilistic reversal learning (PRL) task after D2R agonism. Computational reinforcement learning modelling was applied to choice data from the PRL task to evaluate the contribution of latent factors. RESULTS: D2R agonism with quinpirole dose-dependently impaired both visual reversal and PRL. Analysis of the probe trials on the visual task revealed a complete blockade of learning from negative feedback at the 0.25 mg/kg dose, while learning from positive feedback was intact. Estimated parameters from the model that best described the PRL choice data revealed a steep and selective decrease in learning rate from losses. D1R antagonism had a transient effect on the positive probe trials. CONCLUSIONS: D2R stimulation impairs reversal learning by blocking the impact of negative feedback.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Estimulación Luminosa/métodos , Receptores de Dopamina D2/metabolismo , Aprendizaje Inverso/fisiología , Percepción Espacial/fisiología , Animales , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Masculino , Ratas , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Aprendizaje Inverso/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología
12.
Neuropsychopharmacology ; 33(5): 1028-37, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17637611

RESUMEN

Atomoxetine is a noradrenaline-specific reuptake inhibitor used clinically for the treatment of childhood and adult attention deficit hyperactivity disorder (ADHD). Studies in human volunteers and patient groups have shown that atomoxetine improves stop-signal reaction time (SSRT) performance, an effect consistent with a reduction in motor impulsivity. However, ADHD is a heterogeneous disorder and it is of interest to determine whether atomoxetine is similarly effective against other forms of impulsivity, as well as the attentional impairment present in certain subtypes of ADHD. The present study examined the effects of atomoxetine on impulsivity using an analogous SSRT task in rats and two additional tests of impulsivity; delay discounting of reward and the five-choice serial reaction time task (5CSRTT), the latter providing an added assessment of sustained visual attention. Atomoxetine produced a significant dose-dependent speeding of SSRT. In addition, atomoxetine produced a selective, dose-dependent decrease in premature responding on the 5CSRTT. Finally, on the delay-discounting task, atomoxetine significantly decreased impulsivity by increasing preference for the large-value reward across increasing delay. These findings conclusively demonstrate that atomoxetine decreases several distinct forms of impulsivity in rats. The apparent contrast of these effects with stimulant drugs such as amphetamine and methylphenidate, which generally act to increase impulsivity on the 5CSRTT, may provide new insights into the mechanisms of action of stimulant and nonstimulant drugs in ADHD.


Asunto(s)
Inhibidores de Captación Adrenérgica/uso terapéutico , Conducta Impulsiva/clasificación , Conducta Impulsiva/tratamiento farmacológico , Propilaminas/uso terapéutico , Análisis de Varianza , Animales , Clorhidrato de Atomoxetina , Conducta Animal/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibición Psicológica , Masculino , Ratas , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Esquema de Refuerzo , Refuerzo en Psicología , Análisis y Desempeño de Tareas
13.
Pharmacol Biochem Behav ; 90(2): 250-60, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18272211

RESUMEN

Impulsive acts and decisions are a part of everyday normal behavior. However, in its pathological forms, impulsivity can be a debilitating disorder often associated with a number of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD). This article reviews recent progress in our understanding of the neurobiology of impulsivity using examples from recent investigations in experimental animals. Evidence is reviewed from several well-established paradigms with putative utility in assessing distinct forms of impulsive behavior in rodents, including the 5-choice serial reaction time (5CSRT) task and the delay discounting paradigm. We discuss, in particular, recent psychopharmacological and in-vivo neurochemical data in task-performing rats showing functional heterogeneity of the forebrain dopamine (DA), noradrenaline (NA), serotonin (5-HT) and acetylcholine (ACh) systems and identify how these systems normally function to facilitate flexible goal-directed behavior in situations that tax basic attentional functions and inhibitory response control mechanisms. We also discuss future research needs in terms of understanding the functional diversity of different sub-regions of prefrontal cortex (PFC) and how these systems normally interact with the striatum and main nuclei of origin of DA and NA neurons. Finally, we argue in line with others that animal paradigms are unlikely to model all aspects of complex psychiatric conditions such as ADHD but components of such syndromes may be amenable to investigation using sophisticated animal models based on highly-defined psychiatric endophenotypes.


Asunto(s)
Cuerpo Estriado/fisiología , Conducta Impulsiva , Corteza Prefrontal/fisiología , Acetilcolina/metabolismo , Animales , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/etiología , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Condicionamiento Operante , Dopamina/fisiología , Humanos , Tiempo de Reacción , Serotonina/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-31168482

RESUMEN

Important tools in the study of prefrontal cortical-dependent executive functions are cross-species behavioural tasks with translational validity. A widely used test of executive function and attention in humans is the continuous performance task (CPT). Optimal performance in variations of this task is associated with activity along the medial wall of the prefrontal cortex, including the anterior cingulate cortex (ACC), for its essential components such as response control, target detection and processing of false alarm errors. We assess the validity of a recently developed rodent touchscreen continuous performance task (rCPT) that is analogous to typical human CPT procedures. Here we evaluate the performance of mice with quinolinic acid-induced lesions centred on the ACC in the rCPT following a range of task parameter manipulations designed to challenge attention and impulse control. Lesioned mice showed a disinhibited response profile expressed as a decreased response criterion and increased false alarm rates. ACC lesions also resulted in a milder increase in inter-trial interval responses ('ITI touches') and hit rate. Lesions did not affect discriminative sensitivity d'. The disinhibited behaviour of ACC lesioned animals was stable and not affected by the manipulation of variable task parameter manipulations designed to increase task difficulty. The results are in general agreement with human studies implicating the ACC in the processing of inappropriate responses. We conclude that the rCPT may be useful for studying prefrontal cortex function in mice and has the capability of providing meaningful links between animal and human cognitive tasks.

15.
Transl Psychiatry ; 8(1): 247, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429456

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) confers high risk of neurodevelopmental disorders such as schizophrenia and attention-deficit hyperactivity disorder. These disorders are associated with attentional impairment, the remediation of which is important for successful therapeutic intervention. We assessed a 22q11.2DS mouse model (Df(h22q11)/+) on a touchscreen rodent continuous performance test (rCPT) of attention and executive function that is analogous to human CPT procedures. Relative to wild-type littermates, Df(h22q11)/+ male mice showed impaired attentional performance as shown by decreased correct response ratio (hit rate) and a reduced ability to discriminate target stimuli from non-target stimuli (discrimination sensitivity, or d'). The Df(h22q11)/+ model exhibited decreased prefrontal cortical-hippocampal oscillatory synchrony within multiple frequency ranges during quiet wakefulness, which may represent a biomarker of cognitive dysfunction. The stimulant amphetamine (0-1.0 mg/kg, i.p.) dose-dependently improved d' in Df(h22q11)/+ mice whereas the highest dose of modafinil (40 mg/kg, i.p.) exacerbated their d' impairment. This is the first report to directly implicate attentional impairment in a 22q11.2DS mouse model, mirroring a key endophenotype of the human disorder. The capacity of the rCPT to detect performance impairments in the 22q11.2DS mouse model, and improvement following psychostimulant-treatment, highlights the utility and translational potential of the Df(h22q11)/+ model and this automated behavioral procedure.


Asunto(s)
Atención/fisiología , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Disfunción Cognitiva/fisiopatología , Síndrome de DiGeorge/fisiopatología , Sincronización de Fase en Electroencefalografía/fisiología , Función Ejecutiva/fisiología , Hipocampo/fisiopatología , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Anfetamina/farmacología , Animales , Atención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/administración & dosificación , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Función Ejecutiva/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Modafinilo/farmacología , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos
16.
Psychopharmacology (Berl) ; 234(19): 2837-2857, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28744563

RESUMEN

RATIONALE: Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES: We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS: MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS: Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 µg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION: The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.


Asunto(s)
Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Acetato de Metilazoximetanol/toxicidad , Nootrópicos/uso terapéutico , Desempeño Psicomotor/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Animales , Atención/efectos de los fármacos , Atención/fisiología , Cognición/fisiología , Función Ejecutiva/efectos de los fármacos , Masculino , Neurotoxinas/toxicidad , Nootrópicos/farmacología , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Esquizofrenia/inducido químicamente , Resultado del Tratamiento
17.
Neuropsychopharmacology ; 40(3): 577-89, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25120076

RESUMEN

Drug addiction is associated with a relative devaluation of natural or socially-valued reinforcers that are unable to divert addicts from seeking and consuming the drug. Before protracted drug exposure, most rats prefer natural rewards, such as saccharin, over cocaine. However, a subpopulation of animals prefer cocaine over natural rewards and are thought to be vulnerable to addiction. Specific behavioral traits have been associated with different dimensions of drug addiction. For example, anxiety predicts loss of control over drug intake whereas sensation seeking and sign-tracking are markers of a greater sensitivity to the rewarding properties of the drug. However, how these behavioral traits predict the disinterest for natural reinforcers remains unknown. In a population of rats, we identified sensation seekers (HR) on the basis of elevated novelty-induced locomotor reactivity, high anxious rats (HA) based on the propensity to avoid open arms in an elevated-plus maze and sign-trackers (ST) that are prone to approach, and interaction with, reward-associated stimuli. Rats were then tested on their preference for saccharin over cocaine in a discrete-trial choice procedure. We show that HR rats display a greater preference for saccharin over cocaine compared with ST and HA whereas the motivation for the drug was comparable between the three groups. The present data suggest that high locomotor reactivity to novelty, or sensation seeking, by predisposing to an increased choice toward non-drug rewards at early stages of drug use history, may prevent the establishment of chronic cocaine use.


Asunto(s)
Conducta Adictiva , Conducta de Elección , Cocaína/farmacología , Conducta Exploratoria , Actividad Motora , Sacarina/farmacología , Animales , Animales Endogámicos , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/psicología , Masculino , Aprendizaje por Laberinto , Ratas , Sacarina/administración & dosificación , Autoadministración
18.
Curr Protoc Neurosci ; 70: 8.32.1-8.32.12, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559006

RESUMEN

This protocol details a free-operant avoidance paradigm that has been developed to evaluate the relative contribution of different sources of reinforcement of avoidance behavior that may play an important role in the development and maintenance of human anxiety disorders. The task enables the assessment of the effects of safety cues that signal a period free from danger on lever-press avoidance behavior. Avoidance behavior trained using this protocol has been shown to be sensitive to both behavioral and pharmacological manipulations and has been optimized so that it takes approximately 1 month for rats to perform at high levels of stable avoidance responding.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Operante/fisiología , Refuerzo en Psicología , Animales , Señales (Psicología) , Humanos , Ratas , Seguridad
19.
Psychopharmacology (Berl) ; 232(21-22): 3935-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26173611

RESUMEN

RATIONALE: The hippocampus is implicated in many of the cognitive impairments observed in conditions such as Alzheimer's disease (AD) and schizophrenia (SCZ). Often, mice are the species of choice for models of these diseases and the study of the relationship between brain and behaviour more generally. Thus, automated and efficient hippocampal-sensitive cognitive tests for the mouse are important for developing therapeutic targets for these diseases, and understanding brain-behaviour relationships. One promising option is to adapt the touchscreen-based trial-unique nonmatching-to-location (TUNL) task that has been shown to be sensitive to hippocampal dysfunction in the rat. OBJECTIVES: This study aims to adapt the TUNL task for use in mice and to test for hippocampus-dependency of the task. METHODS: TUNL training protocols were altered such that C57BL/6 mice were able to acquire the task. Following acquisition, dysfunction of the dorsal hippocampus (dHp) was induced using a fibre-sparing excitotoxin, and the effects of manipulation of several task parameters were examined. RESULTS: Mice could acquire the TUNL task using training optimised for the mouse (experiments 1). TUNL was found to be sensitive to dHp dysfunction in the mouse (experiments 2, 3 and 4). In addition, we observed that performance of dHp dysfunction group was somewhat consistently lower when sample locations were presented in the centre of the screen. CONCLUSIONS: This study opens up the possibility of testing both mouse and rat models on this flexible and hippocampus-sensitive touchscreen task.


Asunto(s)
Cognición/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Hipocampo/efectos de los fármacos , Animales , Automatización , Conducta de Elección/efectos de los fármacos , Masculino , Meloxicam , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neurotoxinas/farmacología , Tiazinas/farmacología , Tiazoles/farmacología
20.
Psychopharmacology (Berl) ; 232(21-22): 3947-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26415954

RESUMEN

RATIONALE: Continuous performance tests (CPTs) are widely used to assess attentional processes in a variety of disorders including Alzheimer's disease and schizophrenia. Common human CPTs require discrimination of sequentially presented, visually patterned 'target' and 'non-target' stimuli at a single location. OBJECTIVES: The aims of this study were to evaluate the performance of three popular mouse strains on a novel rodent touchscreen test (rCPT) designed to be analogous to common human CPT variants and to investigate the effects of donepezil, a cholinesterase inhibitor and putative cognitive enhancer. METHODS: C57BL/6J, DBA/2J and CD1 mice (n = 15-16/strain) were trained to baseline performance using four rCPT training stages. Then, probe tests assessed the effects of parameter changes on task performance: stimulus size, duration, contrast, probability, inter-trial interval or inclusion of flanker distractors. rCPT performance was also evaluated following acute administration of donepezil (0-3 mg/kg, i.p.). RESULTS: C57BL/6J and DBA/2J mice showed similar acquisition rates and final baseline performance following rCPT training. On probe tests, rCPT performance of both strains was sensitive to alteration of visual and/or attentional demands (stimulus size, duration, contrast, rate, flanker distraction). Relative to C57BL/6J, DBA/2J mice exhibited (1) decreasing sensitivity (d') across the 45-min session, (2) reduced performance on probes where the appearance of stimuli or adjacent areas were changed (size, contrast, flanking distractors) and (3) larger dose- and stimulus duration-dependent changes in performance following donepezil administration. In contrast, CD1 mice failed to acquire rCPT (stage 3) and pairwise visual discrimination tasks. CONCLUSIONS: rCPT is a potentially useful translational tool for assessing attention in mice and for detecting the effects of nootropic drugs.


Asunto(s)
Atención/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Nootrópicos/farmacología , Desempeño Psicomotor/efectos de los fármacos , Animales , Inhibidores de la Colinesterasa/farmacología , Aprendizaje Discriminativo/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Donepezilo , Evaluación Preclínica de Medicamentos , Humanos , Indanos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Piperidinas/farmacología , Especificidad de la Especie , Percepción Visual/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA