Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 2): 284-300, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891842

RESUMEN

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot by shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, an imaging detector capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst is employed, and allows a photon-shot-noise-limited sensitivity to be approached. The setup and its capabilities are reviewed as well as the online and offline analysis tools provided to users.

2.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298500

RESUMEN

All coronaviruses are characterized by spike glycoproteins whose S1 subunits contain the receptor binding domain (RBD). The RBD anchors the virus to the host cellular membrane to regulate the virus transmissibility and infectious process. Although the protein/receptor interaction mainly depends on the spike's conformation, particularly on its S1 unit, their secondary structures are poorly known. In this paper, the S1 conformation was investigated for MERS-CoV, SARS-CoV, and SARS-CoV-2 at serological pH by measuring their Amide I infrared absorption bands. The SARS-CoV-2 S1 secondary structure revealed a strong difference compared to those of MERS-CoV and SARS-CoV, with a significant presence of extended ß-sheets. Furthermore, the conformation of the SARS-CoV-2 S1 showed a significant change by moving from serological pH to mild acidic and alkaline pH conditions. Both results suggest the capability of infrared spectroscopy to follow the secondary structure adaptation of the SARS-CoV-2 S1 to different environments.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Análisis Espectral
3.
Opt Express ; 30(11): 19005-19016, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221688

RESUMEN

Motivated by the increasing demand to monitor the air-quality, our study proved the feasibility of a new compact and portable experimental approach based on Terahertz (THz) continuous wave high resolution spectroscopy, to detect the presence of the air's contaminants as greenhouse gases (GHG) and volatile organic compounds (VOCs). In this specific work, we first characterized, determining their molar absorption coefficient in the spectral region (0.06-1.2) THz, the pure optical response of the vapor of five VOCs: methanol, ethanol, isopropanol, 1-butanol and 2-butanol. In particular, 1-butanol and 2-butanol are characterized for the first time in literature at THz frequencies. Then we studied the optical response of their mixtures achieved with ambient air and ethanol. The results show that it is possible for a differentiation of single components by describing their spectral absorption in terms of the linear combination of pure compounds absorption. This proof of concept for this apparatus study and set-up paves the way to the use of THz Continuous wave high resolution spectroscopy for the environmental tracking of air pollutants.

4.
Sensors (Basel) ; 22(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35957181

RESUMEN

Human exposure to Volatile Organic Compounds (VOCs) and their presence in indoor and working environments is recognized as a serious health risk, causing impairments of varying severities. Different detecting systems able to monitor VOCs are available in the market; however, they have significant limitations for both sensitivity and chemical discrimination capability. During the last years we studied systematically the use of Fourier Transform Infrared (FTIR) spectroscopy as an alternative, powerful tool for quantifying VOCs in air. We calibrated the method for a set of compounds (styrene, acetone, ethanol and isopropanol) by using both laboratory and portable infrared spectrometers. The aim was to develop a new, and highly sensitive sensor system for VOCs monitoring. In this paper, we improved the setup performance, testing the feasibility of using a multipass cell with the aim of extending the sensitivity of our system down to the part per million (ppm) level. Considering that multipass cells are now also available for portable instruments, this study opens the road for the design of new high-resolution devices for environmental monitoring.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Orgánicos Volátiles/análisis
5.
Phys Biol ; 18(4)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34038897

RESUMEN

While the mathematical laws of uncontrolled epidemic spreading are well known, the statistical physics of coronavirus epidemics with containment measures is currently lacking. The modelling of available data of the first wave of the Covid-19 pandemic in 2020 over 230 days, in different countries representative of different containment policies is relevant to quantify the efficiency of these policies to face the containment of any successive wave. At this aim we have built a 3D phase diagram tracking the simultaneous evolution and the interplay of the doubling time,Td, and the reproductive number,Rtmeasured using the methodological definition used by the Robert Koch Institute. In this expanded parameter space three different main phases,supercritical,criticalandsubcriticalare identified. Moreover, we have found that in thesupercriticalregime withRt> 1 the doubling time is smaller than 40 days. In this phase we have established the power law relation betweenTdand (Rt- 1)-νwith the exponentνdepending on the definition of reproductive number. In thesubcriticalregime whereRt< 1 andTd> 100 days, we have identified arrested metastable phases whereTdis nearly constant.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2/efectos de los fármacos , Simulación por Computador , Humanos , Modelos Biológicos , Pandemias , Factores de Tiempo
6.
Nanotechnology ; 33(9)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34666324

RESUMEN

Many technological applications demand large amount of nanoparticles with well-defined properties, which is feasible only by using large-scale production methods. In this framework, we have performed structural and local geometric investigations of cobalt oxide nanoparticles synthesized by high temperature arc plasma route in helium and in air atmosphere with different arc currents, a competitive and low cost technological approach to synthesize large quantity of different types of nanoparticles. The complex scenario of phase fraction, shape, size distribution and hysteresis loop features of high temperature arc plasma synthesis of nanoparticles can be determined by the arc current and the selected gas. X-ray diffraction patterns reveal a multicomponent phase formation containing cubic cobaltous oxide (CoO), cobaltic oxide (Co3O4) and metallic cobalt phases. The synthesis of different phases is confirmed by x-ray absorption spectroscopy measurements at the CoK-edge. Both extended x-ray absorption fine structure and x-ray absorption near edge structure analyses show the presence of metallic nanoparticles in He ambient at high arc current. Moreover, high-resolution transmission electron microscopy images and magnetic hysteresis loop measurements show that the mean particle size increases and the coercivity decreases with increasing arc current in air ambient due to the intense particle-particle interaction. At variance, in He ambient synthesized samples due to the high quenching rate and the high thermal conductivity, a multi-domain formation in which the nanoparticles' crystalline fraction decreases and a fluctuating coercivity due to core-shell structure is observed.

7.
Phys Biol ; 17(6): 065006, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32750685

RESUMEN

The COVID-19 epidemic of the novel coronavirus (severe acute respiratory syndrome SARS-CoV-2) has spread around the world. While different containment policies using non-pharmaceutical interventions have been applied, their efficiencies are not known quantitatively. We show that the doubling time T d(t) with the success s factor, the characteristic time of the exponential growth of T d(t) in the arrested regime, is a reliable tool for early predictions of epidemic spread time evolution and provides a quantitative measure of the success of different containment measures. The efficiency of the containment policy lockdown case finding mobile tracing (LFT) using mandatory mobile contact tracing is much higher than that of the lockdown stop and go policy proposed by the Imperial College team in London. A very low s factor was reached by the LFT policy, giving the shortest time width of the positive case curve and the lowest number of fatalities. The LFT policy was able to reduce the number of fatalities by a factor of 100 in the first 100 d of the COVID-19 epidemic, reduce the time width of the COVID-19 pandemic curve by a factor 2.5, and rapidly stop new outbreaks and thereby avoid a second wave to date.


Asunto(s)
COVID-19/epidemiología , Trazado de Contacto/métodos , Algoritmos , COVID-19/prevención & control , Trazado de Contacto/economía , Humanos , Aplicaciones Móviles , Pandemias , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo
8.
Phys Chem Chem Phys ; 22(11): 6282-6290, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32129435

RESUMEN

The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the surface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature supersonic cluster beam deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V 3d-O 2p and V 3d-V 4s hybridizations which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications.

9.
Phys Chem Chem Phys ; 21(17): 8663-8678, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30973554

RESUMEN

We have conducted a comprehensive investigation of the optical and vibrational properties of the binary semiconductor SnSe as a function of temperature and pressure by means of experimental and ab initio probes. Our high-temperature investigations at ambient pressure have successfully reproduced the progressive enhancement of the free carrier concentration upon approaching the Pnma → Bbmm transition, whereas the pressure-induced Pnma → Bbmm transformation at ambient temperature, accompanied by an electronic semiconductor → semi-metal transition, has been identified for bulk SnSe close to 10 GPa. Modeling of the Raman-active vibrations revealed that three-phonon anharmonic processes dominate the temperature-induced mode frequency evolution. In addition, SnSe was found to exhibit a pressure-induced enhancement of the Born effective charge. Such behavior is quite unique and cannot be rationalized within the proposed effective charge trends of binary materials under pressure.

10.
Inorg Chem ; 57(10): 6051-6056, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29722989

RESUMEN

The quaternary compound Cu2ZnSnSe4 (CZTSe), as a typical candidate for both solar cells and thermoelectrics, is of great interest for energy harvesting applications. Materials with a high thermoelectric efficiency have a relatively low thermal conductivity, which is closely related to their chemical bonding and lattice dynamics. Therefore, it is essential to investigate the lattice dynamics of materials to further improve their thermoelectric efficiency. Here we report a lattice dynamic study in a cobalt-substituted CZTSe system using temperature-dependent X-ray absorption fine structure spectroscopy (TXAFS). The lattice contribution to the thermal conductivity is dominant, and its reduction is mainly ascribed to the increment of point defects after cobalt substitution. Furthermore, a lattice dynamic study shows that the Einstein temperature of atomic pairs is reduced after cobalt substitution, revealing that increasing local structure disorder and weakened bonding for each of the atomic pairs are achieved, which gives us a new perspective for understanding the behavior of lattice thermal conductivity.

11.
J Synchrotron Radiat ; 23(2): 560-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26917144

RESUMEN

The occurrence of scissors modes in crystals that have deformed ions in their unit cells was predicted some time ago. The theoretical value of their energy is rather uncertain, however, ranging between ten and a few tens of eV, with the corresponding widths of 10(-7) to 10(-6) eV. Their observation by resonance fluorescence experiments therefore requires a photon spectrometer covering a wide energy range with a very high resolving power. Here, a new experiment is proposed and discussed in which such difficulties are overcome by measuring with a superconducting quantum interference device (SQUID) the variation of the magnetic field associated with the excitation of scissors modes.

12.
Phys Chem Chem Phys ; 18(21): 14580-7, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181423

RESUMEN

The misfit layered cobaltate thermoelectrics are good candidates for high temperature thermoelectric applications. Ca3Co4O9 is a typical compound of this family, which consists of rock salt Ca2CoO3 slabs alternating with hexagonal CoO2 slabs with a large lattice mismatch along the b axis. Each slab is 0.3-0.5 nm thick and shows an inherent structural heterogeneity at the nanoscale. The latter is a key parameter that affects the electrical transport and the heat flow in these misfit structured thermoelectrics. To clarify the physical origin of the thermoelectric performance of iron doped Ca3Co4O9 we combined X-ray near-edge absorption spectroscopy (XANES) and quantum modeling using density functional theory. In contrast to single-site doping, the iron doping first occurs at the Co1 site of the rock salt slab at low doping while at higher doping it prefers the Ca1 site of the rock salt slab. Doping at the Ca1 site modifies the electronic structure tuning the nanoscale structural heterogeneity. This mechanism may open a new route to optimizing the thermoelectric performance of misfit layered thermoelectrics.

13.
Proc Natl Acad Sci U S A ; 109(39): 15685-90, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22961255

RESUMEN

Electronic functionalities in materials from silicon to transition metal oxides are, to a large extent, controlled by defects and their relative arrangement. Outstanding examples are the oxides of copper, where defect order is correlated with their high superconducting transition temperatures. The oxygen defect order can be highly inhomogeneous, even in optimal superconducting samples, which raises the question of the nature of the sample regions where the order does not exist but which nonetheless form the "glue" binding the ordered regions together. Here we use scanning X-ray microdiffraction (with a beam 300 nm in diameter) to show that for La(2)CuO(4+y), the glue regions contain incommensurate modulated local lattice distortions, whose spatial extent is most pronounced for the best superconducting samples. For an underdoped single crystal with mobile oxygen interstitials in the spacer La(2)O(2+y) layers intercalated between the CuO(2) layers, the incommensurate modulated local lattice distortions form droplets anticorrelated with the ordered oxygen interstitials, and whose spatial extent is most pronounced for the best superconducting samples. In this simplest of high temperature superconductors, there are therefore not one, but two networks of ordered defects which can be tuned to achieve optimal superconductivity. For a given stoichiometry, the highest transition temperature is obtained when both the ordered oxygen and lattice defects form fractal patterns, as opposed to appearing in isolated spots. We speculate that the relationship between material complexity and superconducting transition temperature T(c) is actually underpinned by a fundamental relation between T(c) and the distribution of ordered defect networks supported by the materials.

14.
Phys Chem Chem Phys ; 16(43): 24055-62, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25285404

RESUMEN

We argue that a kind of magnetic nanoparticle might exist characterized by the locking of the constituent spins with the density profile of the macrospin. We represent such a nanoparticle by two interacting rigid rotors, one of which has a large spin attached to the body, namely a two rotor model with spin. By this model we can describe in a unified way the cases of nanoparticles free and stuck in an elastic or a rigid matrix. We evaluate the magnetic susceptibility for the latter case and under some realistic assumptions we get results in closed form. A crossover between thermal and purely quantum hopping occurs at a temperature much higher than that at which tunneling becomes important. Agreement with some experimental data is remarkable.

15.
Materials (Basel) ; 17(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673179

RESUMEN

Copper-based alloys designed to combine high electronic and thermal conductivities with high mechanical strength find a wide range of applications in different fields. Among the principal representatives, strongly diluted CuAg alloys are of particular interest as innovative materials for the realization of accelerating structures when the use of high-gradient fields requires increasingly high mechanical and thermal performances to overcome the limitations induced by breakdown phenomena. This work reports the production and optical characterization of CuAg crystals at low Ag concentrations, from 0.028% wt to 0.1% wt, which guarantee solid solution hardening while preserving the exceptional conductivity of Cu. By means of Fourier Transform Infrared (FTIR) micro-spectroscopy experiments, the low-energy electrodynamics of the alloys are compared with that of pure Cu, highlighting the complete indistinguishability in terms of electronic transport for such low concentrations. The optical data are further supported by Raman micro-spectroscopy and SEM microscopy analyses, allowing the demonstration of the full homogeneity and complete solubility of solid Ag in copper at those concentrations. Together with the solid solution hardening deriving from the alloying process, these results support the advantage of strongly diluted CuAg alloys over conventional materials for their application in particle accelerators.

16.
J Synchrotron Radiat ; 20(Pt 5): 811-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955048

RESUMEN

The first absorption spectra recorded in Europe using synchrotron radiation as the X-ray source were the K-edge of Al and the LIII-edge of Cu taken at Frascati electron synchrotron in May 1963 by the French-Italian group comprised of Y. Cauchois, C. Bonnelle and G. Missoni.

17.
J Synchrotron Radiat ; 20(Pt 1): 110-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23254663

RESUMEN

The cubic calcium sulfide (CaS) is a well known system and an attractive building block material for many luminescence technological applications. However, it is essential to achieve an accurate understanding of its electronic structure in order to engineer its band structure for optimized applications. Here a study of the electronic structure of CaS by means of X-ray absorption spectroscopy performed at both Ca and S K-edges, and calculations performed in the framework of the multiple-scattering theory and of the finite difference method are presented. At the Ca K-edge the presence of an anomalous d states feature is discussed while in the S K-edge spectrum the presence of a pre-edge shoulder owing to the hybridization among Ca d states and S p states is pointed out. Although the l-projected density of states of CaS is in good agreement with previous first-principles calculations, the standard muffin-tin potential is inadequate to reproduce near-edge structures at both Ca and S K-edges in this system. Indeed, with its highly symmetric and less compact structure, CaS is characterized by a large set of collinear atomic configurations that pose severe constraints on the construction of the atomic potential. On the contrary, the finite-difference method with no muffin-tin approximation is more suitable for X-ray absorption calculations in this system.

18.
J Synchrotron Radiat ; 20(Pt 3): 455-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23592625

RESUMEN

To clarify the contrasting impurity effects of Mn and Zn dopants on the critical temperature of optimally doped Ba0.5K0.5Fe2As2 superconductors, extended X-ray absorption fine-structure spectroscopy was implemented at the Fe and As K-edge. In Mn-doped compounds a gradual deviation of the symmetric FeAs4 tetrahedron and weakening of the Fe-As bond was observed. Conversely, in Zn-doped compounds the perfect FeAs4 tetrahedron is maintained and the Fe-As bond is rigid. The local structural details are consistent with the development of superconductivity in these two systems, suggesting a significant role played by the topology of the FeAs4 tetrahedron and rigidness of the Fe-As bond in Mn/Zn-doped Ba0.5K0.5Fe2As2 superconductors.


Asunto(s)
Compuestos de Bario/química , Manganeso/química , Espectroscopía de Absorción de Rayos X/métodos , Zinc/química , Compuestos de Bario/análisis , Conductividad Eléctrica , Manganeso/análisis , Ensayo de Materiales , Conformación Molecular , Dispersión de Radiación , Rayos X , Zinc/análisis
19.
Phys Chem Chem Phys ; 15(40): 17595-600, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24037115

RESUMEN

Indium oxides such as In2O3 based thermoelectric ceramics exhibit a figure of merit ZT ~0.5 above 1000 K, while optimized ZnO based thermoelectrics may reach ZT ~0.3 at 1273 K. A way to further optimize the thermoelectric performance is to tune the thermal conductivity. In this work, a reduction of the thermal conductivity greater than 30% has been observed. Combining thermal conductivity measurements, Scanning Electron Microscopy (SEM) images, X-ray Absorption Fine-structure spectroscopy (XAFS) data and Full Multiple Scattering calculations, we associated the phenomenon with an effective scattering of mid- and long-wavelength phonons by embedded ZnO nano-inclusions in the In2O3 matrix. The results suggest a protocol for the synthesis of new heat-designed materials for many novel applications, such as high ZT thermoelectrics, thermal crystals, heat optics devices, etc.

20.
Front Chem ; 11: 1116463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36864901

RESUMEN

In this paper we describe the results obtained with a novel method to prepare depositions of asbestos fibres for toxicological tests in vitro. The technique is based on a micro-dispenser, working as an inkjet printer, able to deposit micro-sized droplets from a suspension of fibres in a liquid medium; we used here a highly evaporating liquid (ethanol) to reduce the experimental time, however other solvents could be used. Both the amount and spatial distribution of fibres on the substrate can be controlled by adjusting the parameters of the micro-dispenser such as deposition area, deposition time, uniformity and volume of the deposited liquid. Statistical analysis of images obtained by optical and scanning electron microscopy shows that this technique produces an extremely homogeneous distribution of fibers. Specifically, the number of deposited single fibres is maximized (up to 20 times), a feature that is essential when performing viability tests where agglomerated or untangled fibrous particles need to be avoided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA