Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(22): e202402965, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533678

RESUMEN

The development of synthetic active matter requires the ability to design materials capable of harnessing energy from a source to carry out work. Nature achieves this using chemical reaction cycles in which energy released from an exergonic chemical reaction is used to drive biochemical processes. Although many chemically fuelled synthetic reaction cycles that control transient responses, such as self-assembly, have been reported, the generally high complexity of the reported systems hampers a full understanding of how the available chemical energy is actually exploited by these systems. This lack of understanding is a limiting factor in the design of chemically fuelled active matter. Here, we report a minimalistic synthetic responsive reaction cycle in which adenosine diphosphate (ADP) triggers the formation of a catalyst for its own hydrolysis. This establishes an interdependence between the concentrations of the network components resulting in the transient formation of the catalyst. The network is sufficiently simple that all kinetic and thermodynamic parameters governing its behaviour can be characterised, allowing kinetic models to be built that simulate the progress of reactions within the network. While the current network does not enable the ADP-hydrolysis reaction to populate a non-equilibrium composition, these models provide insight into the way the network dissipates energy. Furthermore, essential design principles are revealed for constructing driven systems, in which the network composition is driven away from equilibrium through the consumption of chemical energy.

2.
Angew Chem Int Ed Engl ; 62(33): e202307530, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37367487

RESUMEN

An energy ratchet mechanism is exploited for the synthesis of a molecule. In the presence of adenosine triphosphate (ATP), hydrazone-bond formation between an aldehyde and hydrazide is accelerated and the composition at thermodynamic equilibrium is shifted towards the hydrazone. Enzymatic hydrolysis of ATP installs a kinetically stable state, at which hydrazone is present at a higher concentration compared to the composition at thermodynamic equilibrium in the presence of the degradation products of ATP. It is shown that the kinetic state has an enhanced catalytic activity in the hydrolysis of an RNA-model compound.

3.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872655

RESUMEN

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Asunto(s)
Antígenos de Neoplasias/genética , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Enfermedades de Inmunodeficiencia Primaria/inmunología , Virosis/genética , Antígenos de Neoplasias/inmunología , Niño , Preescolar , Femenino , Humanos , Lactante , Inflamación/diagnóstico por imagen , Inflamación/genética , Inflamación/inmunología , Masculino , Enfermedades de Inmunodeficiencia Primaria/diagnóstico por imagen , Enfermedades de Inmunodeficiencia Primaria/genética , Virosis/diagnóstico por imagen , Virosis/inmunología
4.
Chem Sci ; 14(33): 8878-8888, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37621420

RESUMEN

A new family of duplex-forming recognition encoded oligomers, capable of sequence selective duplex formation and template directed synthesis, was developed. Monomers equipped with both amine and aldehyde groups were functionalized with 2-trifluoromethylphenol or phosphine oxide as H-bond recognition units. Duplex formation and assembly properties of homo- and hetero-oligomers were studied by 19F and 1H NMR experiments in chloroform. The designed backbone prevents the undesired 1,2-folding allowing sequence-selective duplex formation, and the stability of the antiparallel duplex is 3-fold higher than the parallel arrangement. Dynamic combinatorial chemistry was exploited for the templated synthesis of complementary oligomers, showing that an aniline dimer can template the formation of the complementary imine. The key role of the H-bond recognition confers to the system the ability to discriminate a mutated donor monomer incapable of H-bonding. Sequence selective duplex formation combined with the template effect makes this system an attractive target for further studies.

5.
Front Pediatr ; 9: 691024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34414143

RESUMEN

Most children with a SARS-CoV-2 infection are asymptomatic or exhibit mild symptoms. However, a small number of children develop features of substantial inflammation temporarily related to the COVID-19 also called multisystem inflammatory syndrome in children (MIS-C) or pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS), clinically similar to Kawasaki disease, toxic shock syndrome and hemophagocytic lymphohistiocytosis (HLH). It is well-known that genetic pre-disposition plays an important role in virally-triggered diseases such as Epstein-Barr virus (EBV)-associated HLH, while this has not yet been established for patients with MIS-C. Here we describe a male patient fulfilling the diagnostic criteria of MIS-C, who was initially treated according to current consensus guidelines. Presence of hypofibrinogenemia, normal lymphocyte counts and C-reactive protein, but substantial hyperferritinemia distinguish this patient from others with MIS-C. The clinical course following initial presentation with acute respiratory distress syndrome was marked by fatal liver failure in the context of EBV-associated HLH despite treatment with steroids, intravenous immunoglobulins, interleukin (IL)-1 receptor blockade and eventually HLH-directed treatment. X-linked lymphoproliferative disease type 1 (XLP1), a subtype of primary HLH was diagnosed in this patient post-mortem. This case report highlights the importance of including HLH in the differential diagnosis in MIS-C with severe disease course to allow specific, risk-adapted treatment and genetic counseling.

6.
Front Neurosci ; 13: 945, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551698

RESUMEN

Inherited retinal dystrophies (IRDs) are a large and heterogeneous group of degenerative diseases caused by mutations in various genes. Given the favorable anatomical and immunological characteristics of the eye, gene therapy holds great potential for their treatment. Our goal is to validate the preservation of visual functions by viral-free homology directed repair (HDR) in an autosomal recessive loss of function mutation. We used a tailored gene editing system based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to prevent retinal photoreceptor death in the retinal degeneration 10 (Rd10) mouse model of retinitis pigmentosa. We tested the gene editing tool in vitro and then used in vivo subretinal electroporation to deliver it to one of the retinas of mouse pups at different stages of photoreceptor differentiation. Three months after gene editing, the treated eye exhibited a higher visual acuity compared to the untreated eye. Moreover, we observed preservation of light-evoked responses both in explanted retinas and in the visual cortex of treated animals. Our study validates a CRISPR/Cas9-based therapy as a valuable new approach for the treatment of retinitis pigmentosa caused by autosomal recessive loss-of-function point mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA