Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(9): e1009023, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925947

RESUMEN

Lung cancer is the leading cause of cancer-related death and lung adenocarcinoma is its most common subtype. Although genetic alterations have been identified as drivers in subsets of lung adenocarcinoma, they do not fully explain tumor development. Epigenetic alterations have been implicated in the pathogenesis of tumors. To identify epigenetic alterations driving lung adenocarcinoma, we used an improved version of the Tracing Enhancer Networks using Epigenetic Traits method (TENET 2.0) in primary normal lung and lung adenocarcinoma cells. We found over 32,000 enhancers that appear differentially activated between normal lung and lung adenocarcinoma. Among the identified transcriptional regulators inactivated in lung adenocarcinoma vs. normal lung, NKX2-1 was linked to a large number of silenced enhancers. Among the activated transcriptional regulators identified, CENPA, FOXM1, and MYBL2 were linked to numerous cancer-specific enhancers. High expression of CENPA, FOXM1, and MYBL2 is particularly observed in a subgroup of lung adenocarcinomas and is associated with poor patient survival. Notably, CENPA, FOXM1, and MYBL2 are also key regulators of cancer-specific enhancers in breast adenocarcinoma of the basal subtype, but they are associated with distinct sets of activated enhancers. We identified individual lung adenocarcinoma enhancers linked to CENPA, FOXM1, or MYBL2 that were associated with poor patient survival. Knockdown experiments of FOXM1 and MYBL2 suggest that these factors regulate genes involved in controlling cell cycle progression and cell division. For example, we found that expression of TK1, a potential target gene of a MYBL2-linked enhancer, is associated with poor patient survival. Identification and characterization of key transcriptional regulators and associated enhancers in lung adenocarcinoma provides important insights into the deregulation of lung adenocarcinoma epigenomes, highlighting novel potential targets for clinical intervention.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Epigénesis Genética/genética , Elementos Reguladores de la Transcripción/genética , Adenocarcinoma/genética , Adulto , Anciano , Proteínas de Ciclo Celular/genética , Epigenómica , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Homeobox , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Secuencias Reguladoras de Ácidos Nucleicos/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L173-L184, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32432919

RESUMEN

The alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells, the latter being capable of self-renewal and transdifferentiation into AT1 cells for normal maintenance and restoration of epithelial integrity following injury. MicroRNAs (miRNAs) are critical regulators of several biological processes, including cell differentiation; however, their role in establishment/maintenance of cellular identity in adult alveolar epithelium is not well understood. To investigate this question, we performed genome-wide analysis of sequential changes in miRNA and gene expression profiles using a well-established model in which human AT2 (hAT2) cells transdifferentiate into AT1-like cells over time in culture that recapitulates many aspects of transdifferentiation in vivo. We defined three phases of miRNA expression during the transdifferentiation process as "early," "late," and "consistently" changed, which were further subclassified as up- or downregulated. miRNAs with altered expression at all time points during transdifferentiation were the largest subgroup, suggesting the need for consistent regulation of signaling pathways to mediate this process. Target prediction analysis and integration with previously published gene expression data identified glucocorticoid signaling as the top pathway regulated by miRNAs. Serum/glucocorticoid-regulated kinase 1 (SGK1) emerged as a central regulatory factor, whose downregulation correlated temporally with gain of hsa-miR-424 and hsa-miR-503 expression. Functional validation demonstrated specific targeting of these miRNAs to the 3'-untranslated region of SGK1. These data demonstrate the time-related contribution of miRNAs to the alveolar transdifferentiation process and suggest that inhibition of glucocorticoid signaling is necessary to achieve the AT1-like cell phenotype.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Genoma Humano , MicroARNs/metabolismo , Alveolos Pulmonares/metabolismo , Transcriptoma/genética , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , Transdiferenciación Celular/genética , Regulación de la Expresión Génica , Glucocorticoides/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Hum Mol Genet ; 26(15): 3014-3027, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854564

RESUMEN

Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis.


Asunto(s)
Islas de CpG/genética , Neoplasias Pulmonares/genética , Fumar/efectos adversos , Células A549/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/sangre , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Metilación de ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Epigenómica/métodos , Estudio de Asociación del Genoma Completo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Fumar/genética , Nicotiana
4.
Int J Cancer ; 143(12): 3169-3180, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30325015

RESUMEN

Claudins are a family of transmembrane proteins integral to the structure and function of tight junctions (TJ). Disruption of TJ and alterations in claudin expression are important features of invasive and metastatic cancer cells. Expression of CLDN18.1, the lung-specific isoform of CLDN18, is markedly decreased in lung adenocarcinoma (LuAd). Furthermore, we recently observed that aged Cldn18 -/- mice have increased propensity to develop LuAd. We now demonstrate that CLDN18.1 expression correlates inversely with promoter methylation and with LuAd patient mortality. In addition, when restored in LuAd cells that have lost expression, CLDN18.1 markedly attenuates malignant properties including xenograft tumor growth in vivo as well as cell proliferation, migration, invasion and anchorage-independent colony formation in vitro. Based on high throughput analyses of Cldn18 -/- murine lung alveolar epithelial type II cells, as well as CLDN18.1-repleted human LuAd cells, we hypothesized and subsequently confirmed by Western analysis that CLDN18.1 inhibits insulin-like growth factor-1 receptor (IGF-1R) and AKT phosphorylation. Consistent with recent data in Cldn18 -/- knockout mice, expression of CLDN18.1 in human LuAd cells also decreased expression of transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) and their target genes, contributing to its tumor suppressor activity. Moreover, analysis of LuAd cells in which YAP and/or TAZ are silenced with siRNA suggests that inhibition of TAZ, and possibly YAP, is also involved in CLDN18.1-mediated AKT inactivation. Taken together, these data indicate a tumor suppressor role for CLDN18.1 in LuAd mediated by a regulatory network that encompasses YAP/TAZ, IGF-1R and AKT signaling.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Claudinas/fisiología , Neoplasias Pulmonares/metabolismo , Transducción de Señal/fisiología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Western Blotting , Proliferación Celular , Claudinas/genética , Metilación de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , Receptor IGF Tipo 1/metabolismo , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
5.
Am J Respir Cell Mol Biol ; 56(3): 310-321, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27749084

RESUMEN

Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type-specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells' roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription-polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell-specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Perfilación de la Expresión Génica , Especificidad de Órganos/genética , Animales , Biomarcadores/metabolismo , Canales Epiteliales de Sodio/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Reproducibilidad de los Resultados , Especificidad de la Especie
6.
Am J Respir Cell Mol Biol ; 55(1): 135-49, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26816051

RESUMEN

Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, has been linked to endoplasmic reticulum (ER) stress. To investigate a causal role for ER stress in BPD pathogenesis, we generated conditional knockout (KO) mice (cGrp78(f/f)) with lung epithelial cell-specific KO of Grp78, a gene encoding the ER chaperone 78-kD glucose-regulated protein (GRP78), a master regulator of ER homeostasis and the unfolded protein response (UPR). Lung epithelial-specific Grp78 KO disrupted lung morphogenesis, causing developmental arrest, increased alveolar epithelial type II cell apoptosis, and decreased surfactant protein and type I cell marker expression in perinatal lungs. cGrp78(f/f) pups died immediately after birth, likely owing to respiratory distress. Importantly, Grp78 KO triggered UPR activation with marked induction of the proapoptotic transcription factor CCAAT/enhancer-binding proteins (C/EBP) homologous protein (CHOP). Increased expression of genes involved in oxidative stress and cell death and decreased expression of genes encoding antioxidant enzymes suggest a role for oxidative stress in alveolar epithelial cell (AEC) apoptosis. Increased Smad3 phosphorylation and expression of transforming growth factor-ß/Smad3 targets Cdkn1a (encoding p21) and Gadd45a suggest that interactions among the apoptotic arm of the UPR, oxidative stress, and transforming growth factor-ß/Smad signaling pathways contribute to Grp78 KO-induced AEC apoptosis and developmental arrest. Chemical chaperone Tauroursodeoxycholic acid reduced UPR activation and apoptosis in cGrp78(f/f) lungs cultured ex vivo, confirming a role for ER stress in observed AEC abnormalities. These results demonstrate a key role for GRP78 in AEC survival and gene expression during lung development through modulation of ER stress, and suggest the UPR as a potential therapeutic target in BPD.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostasis , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
7.
Am J Physiol Lung Cell Mol Physiol ; 310(2): L114-20, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26545903

RESUMEN

Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung.


Asunto(s)
Células Epiteliales Alveolares/citología , Antígenos de Diferenciación/metabolismo , Transdiferenciación Celular/fisiología , Células Epiteliales/citología , Alveolos Pulmonares/citología , Envejecimiento , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Células Epiteliales/metabolismo , Ratones , Ratas
8.
PLoS Med ; 13(12): e1002162, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27923066

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression. METHODS AND FINDINGS: We performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10-50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10-4) were associated with increased risk of distant metastasis. Our study's limitations include a small number of LUAD patients for subgroup analyses and a single-sample design for investigation of subclonality. CONCLUSIONS: These data provide a genomic characterization of LUAD pathogenesis and progression. The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease. LUAD's high heterogeneity emphasizes the need to further study this tumor type and to associate genomic findings with clinical outcomes.


Asunto(s)
Adenocarcinoma/genética , Metilación de ADN , Neoplasias Pulmonares/genética , Adenocarcinoma/etiología , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Adenocarcinoma del Pulmón , Adulto , Anciano , Exoma , Femenino , Genómica , Humanos , Italia , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Factores de Riesgo
9.
PLoS Genet ; 9(6): e1003513, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23818859

RESUMEN

Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Células Epiteliales , Perfilación de la Expresión Génica , Neoplasias Pulmonares/genética , Adulto , Animales , Epigenómica/métodos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Cultivo Primario de Células , Ratas , Transducción de Señal/genética , Activación Transcripcional/genética
10.
Am J Respir Cell Mol Biol ; 51(2): 210-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24588076

RESUMEN

Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased ß-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase ß1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.


Asunto(s)
Claudinas/metabolismo , Células Epiteliales/metabolismo , Alveolos Pulmonares/metabolismo , Uniones Estrechas/metabolismo , Animales , Células Cultivadas , Claudina-3/metabolismo , Claudina-4/metabolismo , Claudina-5/metabolismo , Claudinas/deficiencia , Claudinas/genética , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Impedancia Eléctrica , Genotipo , Homeostasis , Humanos , Transporte Iónico , Ratones , Ratones Noqueados , Ocludina/metabolismo , Permeabilidad , Fenotipo , Alveolos Pulmonares/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
11.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L524-36, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25106430

RESUMEN

Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.


Asunto(s)
Claudina-4/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/fisiopatología , Células Epiteliales Alveolares/fisiología , Animales , Permeabilidad Capilar , Células Cultivadas , Claudina-4/metabolismo , Femenino , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Hiperoxia/genética , Hiperoxia/metabolismo , Pulmón/patología , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Fenotipo , Transcriptoma , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
12.
Transl Psychiatry ; 14(1): 89, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342906

RESUMEN

In this study, the effect of cumulative ACEs experienced on human maternal DNA methylation (DNAm) was estimated while accounting for interaction with domains of ACEs in prenatal peripheral blood mononuclear cell samples from the Maternal and Developmental Risks from Environmental Stressors (MADRES) pregnancy cohort. The intergenerational transmission of ACE-associated DNAm was also explored used paired maternal (N = 120) and neonatal cord blood (N = 69) samples. Replication in buccal samples was explored in the Children's Health Study (CHS) among adult parental (N = 31) and pediatric (N = 114) samples. We used a four-level categorical indicator variable for ACEs exposure: none (0 ACEs), low (1-3 ACEs), moderate (4-6 ACEs), and high (>6 ACEs). Effects of ACEs on maternal DNAm (N = 240) were estimated using linear models. To evaluate evidence for intergenerational transmission, mediation analysis (N = 60 mother-child pairs) was used. Analysis of maternal samples displayed some shared but mostly distinct effects of ACEs on DNAm across low, moderate, and high ACEs categories. CLCN7 and PTPRN2 was associated with maternal DNAm in the low ACE group and this association replicated in the CHS. CLCN7 was also nominally significant in the gene expression correlation analysis among maternal profiles (N = 35), along with 11 other genes. ACE-associated methylation was observed in maternal and neonatal profiles in the COMT promoter region, with some evidence of mediation by maternal COMT methylation. Specific genomic loci exhibited mutually exclusive maternal ACE effects on DNAm in either maternal or neonatal population. There is some evidence for an intergenerational effect of ACEs, supported by shared DNAm signatures in the COMT gene across maternal-neonatal paired samples.


Asunto(s)
Experiencias Adversas de la Infancia , Femenino , Adulto , Recién Nacido , Embarazo , Humanos , Niño , Metilación de ADN , Mucosa Bucal , Leucocitos Mononucleares , Madres , Padres , Canales de Cloruro
13.
bioRxiv ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38948812

RESUMEN

Solid carcinomas are often highly heterogenous cancers, arising from multiple epithelial cells of origin. Yet, how the cell of origin influences the response of the tumor microenvironment is poorly understood. Lung adenocarcinoma (LUAD) arises in the distal alveolar epithelium which is populated primarily by alveolar epithelial type I (AT1) and type II (AT2) cells. It has been previously reported that Gramd2 + AT1 cells can give rise to a histologically-defined LUAD that is distinct in pathology and transcriptomic identity from that arising from Sftpc + AT2 cells1,2. To determine how cells of origin influence the tumor immune microenvironment (TIME) landscape, we comprehensively characterized transcriptomic, molecular, and cellular states within the TIME of Gramd2 + AT1 and Sftpc + AT2-derived LUAD using KRASG12D oncogenic driver mouse models. Myeloid cells within the Gramd2 + AT1-derived LUAD TIME were increased, specifically, immunoreactive monocytes and tumor associated macrophages (TAMs). In contrast, the Sftpc + AT2 LUAD TIME was enriched for Arginase-1+ myeloid derived suppressor cells (MDSC) and TAMs expressing profiles suggestive of immunosuppressive function. Validation of immune infiltration was performed using flow cytometry, and intercellular interaction analysis between the cells of origin and major myeloid cell populations indicated that cell-type specific markers SFTPD in AT2 cells and CAV1 in AT1 cells mediated unique interactions with myeloid cells of the differential immunosuppressive states within each cell of origin mouse model. Taken together, Gramd2 + AT1-derived LUAD presents with an anti-tumor, immunoreactive TIME, while the TIME of Sftpc + AT2-derived LUAD has hallmarks of immunosuppression. This study suggests that LUAD cell of origin influences the composition and suppression status of the TIME landscape and may hold critical implications for patient response to immunotherapy.

14.
NPJ Syst Biol Appl ; 9(1): 9, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012250

RESUMEN

The vast majority of disease-associated variants identified in genome-wide association studies map to enhancers, powerful regulatory elements which orchestrate the recruitment of transcriptional complexes to their target genes' promoters to upregulate transcription in a cell type- and timing-dependent manner. These variants have implicated thousands of enhancers in many common genetic diseases, including nearly all cancers. However, the etiology of most of these diseases remains unknown because the regulatory target genes of the vast majority of enhancers are unknown. Thus, identifying the target genes of as many enhancers as possible is crucial for learning how enhancer regulatory activities function and contribute to disease. Based on experimental results curated from scientific publications coupled with machine learning methods, we developed a cell type-specific score predictive of an enhancer targeting a gene. We computed the score genome-wide for every possible cis enhancer-gene pair and validated its predictive ability in four widely used cell lines. Using a pooled final model trained across multiple cell types, all possible gene-enhancer regulatory links in cis (~17 M) were scored and added to the publicly available PEREGRINE database ( www.peregrineproj.org ). These scores provide a quantitative framework for the enhancer-gene regulatory prediction that can be incorporated into downstream statistical analyses.


Asunto(s)
Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Aprendizaje Automático
15.
Res Sq ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461498

RESUMEN

Adverse Childhood Experiences (ACEs) are events that occur before a child turns 18 years old that may cause trauma. In this study, the effect of cumulative ACEs experienced on human maternal DNA methylation (DNAm) was estimated while accounting for interaction with domains of ACEs in prenatal peripheral blood mononuclear cell samples from the Maternal and Developmental Risks from Environmental Stressors (MADRES) pregnancy cohort. The intergenerational transmission of ACE-associated DNAm was also explored used paired maternal and neonatal cord blood samples. Replication in buccal samples was explored in the Children's Health Study (CHS). We used a four-level categorical indicator variable for ACEs exposure: none (0 ACEs), low (1-3 ACEs), moderate (4-6 ACEs), and high (> 6 ACEs). Effects of ACEs on maternal DNAm (N = 240) were estimated using linear models. To evaluate evidence for intergenerational transmission, mediation analysis was used. Analysis of maternal samples displayed some shared but mostly distinct effects of ACEs on DNAm across low, moderate, and high ACEs categories. CLCN7 and PTPRN2 was associated with maternal DNAm in the low ACE group and this association replicated in the CHS. ACE-associated methylation was observed in maternal and neonatal profiles in the COMT promoter region, with some evidence of mediation by maternal COMT methylation. Specific genomic loci exhibited mutually exclusive maternal ACE effects on DNAm in either maternal or neonatal population. There is some evidence for an intergenerational effect of ACEs, supported by shared DNAm signatures in the COMT gene across maternal-neonatal paired samples.

16.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37905051

RESUMEN

Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.

17.
Cell Rep ; 42(12): 113286, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995179

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Transformación Celular Neoplásica/metabolismo , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
18.
Cells ; 11(7)2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35406686

RESUMEN

NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.


Asunto(s)
Células Epiteliales Alveolares , Surfactantes Pulmonares , Células Epiteliales Alveolares/metabolismo , Células Epiteliales/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo
19.
iScience ; 25(2): 103780, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35169685

RESUMEN

Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.

20.
Carcinogenesis ; 32(9): 1315-23, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21693539

RESUMEN

Indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin from cruciferous vegetables such as broccoli, cabbage and Brussels sprouts, is an anticancer phytochemical that triggers complementary sets of antiproliferative pathways to induce a cell cycle arrest of estrogen-responsive MCF7 breast cancer cells. I3C strongly downregulated transcript expression of the catalytic subunit of the human telomerase (hTERT) gene, which correlated with the dose-dependent indole-mediated G(1) cell cycle arrest without altering the transcript levels of the RNA template (hTR) for telomerase elongation. Exogenous expression of hTERT driven by a constitutive promoter prevented the I3C-induced cell cycle arrest and rescued the I3C inhibition of telomerase enzymatic activity and activation of cellular senescence. Time course studies showed that I3C downregulated expression of estrogen receptor-alpha (ERα) and cyclin-dependent kinase-6 transcripts levels (which is regulated through the Sp1 transcription factor) prior to the downregulation of hTERT suggesting a mechanistic link. Chromatin immunoprecipitation assays demonstrated that I3C disrupted endogenous interactions of both ERα and Sp1 with an estrogen response element-Sp1 composite element within the hTERT promoter. I3C inhibited 17ß-estradiol stimulated hTERT expression and stimulated the production of threonine-phosphorylated Sp1, which inhibits Sp1-DNA interactions. Exogenous expression of both ERα and Sp1, but not either alone, in MCF7 cells blocked the I3C-mediated downregulation of hTERT expression. These results demonstrate that I3C disrupts the combined ERα- and Sp1-driven transcription of hTERT gene expression, which plays a significant role in the I3C-induced cell cycle arrest of human breast cancer cells.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/fisiología , Fase G1/efectos de los fármacos , Indoles/farmacología , Regiones Promotoras Genéticas , Factor de Transcripción Sp1/fisiología , Telomerasa/genética , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/genética , Regulación hacia Abajo , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Femenino , Regulación de la Expresión Génica , Humanos , Fosforilación , Factor de Transcripción Sp1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA