Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Commun Signal ; 22(1): 130, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360641

RESUMEN

In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Exosomas/metabolismo , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Carcinogénesis/metabolismo , Transducción de Señal , Microambiente Tumoral
2.
Cell Commun Signal ; 22(1): 80, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291458

RESUMEN

Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Transducción de Señal , Matriz Extracelular
3.
Cell Commun Signal ; 21(1): 19, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691072

RESUMEN

As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.


Asunto(s)
Exosomas , Virosis , Virus , Humanos , Exosomas/metabolismo , Virosis/metabolismo , Transducción de Señal , Virión
4.
Cell Commun Signal ; 21(1): 118, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208741

RESUMEN

Blood-brain barrier (BBB) interface with multicellular structure controls strictly the entry of varied circulating macromolecules from the blood-facing surface into the brain parenchyma. Under several pathological conditions within the central nervous system, the integrity of the BBB interface is disrupted due to the abnormal crosstalk between the cellular constituents and the recruitment of inflammatory cells. Exosomes (Exos) are nano-sized extracellular vesicles with diverse therapeutic outcomes. These particles transfer a plethora of signaling molecules with the potential to modulate target cell behavior in a paracrine manner. Here, in the current review article, the therapeutic properties of Exos and their potential in the alleviation of compromised BBB structure were discussed. Video Abstract.


Asunto(s)
Exosomas , Vesículas Extracelulares , Barrera Hematoencefálica , Exosomas/metabolismo , Encéfalo , Transporte Biológico , Vesículas Extracelulares/metabolismo
5.
Front Cell Dev Biol ; 12: 1347857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380339

RESUMEN

The vasculature system is composed of a multiplicity of juxtaposed cells to generate a functional biological barrier between the blood and tissues. On the luminal surface of blood vessels, endothelial cells (ECs) are in close contact with circulating cells while supporting basal lamina and pericytes wrap the abluminal surface. Thus, the reciprocal interaction of pericytes with ECs is a vital element in the physiological activity of the vascular system. Several reports have indicated that the occurrence of pericyte dysfunction under ischemic and degenerative conditions results in varied micro and macro-vascular complications. Emerging evidence points to the fact that autophagy, a conserved self-digestive cell machinery, can regulate the activity of several cells like pericytes in response to various stresses and pathological conditions. Here, we aim to highlight the role of autophagic response in pericyte activity and angiogenesis potential following different pathological conditions.

6.
Cancer Lett ; 557: 216077, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36731592

RESUMEN

At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/patología , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos/métodos , Encéfalo/patología , Vesículas Extracelulares/patología
7.
Cell Prolif ; 56(12): e13499, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37156724

RESUMEN

The mammalian target of rapamycin (mTOR) is a protein kinase that responds to different stimuli such as stresses, starvation and hypoxic conditions. The modulation of this effector can lead to the alteration of cell dynamic growth, proliferation, basal metabolism and other bioactivities. Considering this fact, the mTOR pathway is believed to regulate the diverse functions in several cell lineages. Due to the pleiotropic effects of the mTOR, we here, hypothesize that this effector can also regulate the bioactivity of stem cells in response to external stimuli pathways under physiological and pathological conditions. As a correlation, we aimed to highlight the close relationship between the mTOR signalling axis and the regenerative potential of stem cells in a different milieu. The relevant publications were included in this study using electronic searches of the PubMed database from inception to February 2023. We noted that the mTOR signalling cascade can affect different stem cell bioactivities, especially angiogenesis under physiological and pathological conditions. Modulation of mTOR signalling pathways is thought of as an effective strategy to modulate the angiogenic properties of stem cells.


Asunto(s)
Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Proliferación Celular , Mamíferos/metabolismo
8.
Int J Biol Macromol ; 243: 125232, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302628

RESUMEN

During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 µm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.


Asunto(s)
Exosomas , Exosomas/metabolismo , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Agujas , Vacunación
9.
J Biol Eng ; 17(1): 23, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978096

RESUMEN

BACKGROUND: Ischemic niche can promote follicular atresia following the transplantation of cryopreserved/thawed ovaries to the heterotopic sites. Thus, the promotion of blood supply is an effective strategy to inhibit/reduce the ischemic damage to ovarian follicles. Here, the angiogenic potential of alginate (Alg) + fibrin (Fib) hydrogel enriched with melatonin (Mel) and CD144+ endothelial cells (ECs) was assessed on encapsulated cryopreserved/thawed ovaries following transplantation to heterotopic sites in rats. METHODS: Alg + Fib hydrogel was fabricated by combining 2% (w/v) sodium Alg, 1% (w/v) Fib, and 5 IU thrombin at a ratio of 4: 2: 1, respectively. The mixture was solidified using 1% CaCl2. Using FTIR, SEM, swelling rate, and biodegradation assay, the physicochemical properties of Alg + Fib hydrogel were evaluated. The EC viability was examined using an MTT assay. Thirty-six adult female rats (aged between 6 and 8 weeks) with a normal estrus cycle were ovariectomized and enrolled in this study. Cryopreserved/thawed ovaries were encapsulated in Alg + Fib hydrogel containing 100 µM Mel + CD144+ ECs (2 × 104 cells/ml) and transplanted into the subcutaneous region. Ovaries were removed after 14 days and the expression of Ang-1, and Ang-2 was monitored using real-time PCR assay. The number of vWF+ and α-SMA+ vessels was assessed using IHC staining. Using Masson's trichrome staining, fibrotic changes were evaluated. RESULTS: FTIR data indicated successful interaction of Alg with Fib in the presence of ionic cross-linker (1% CaCl2). Data confirmed higher biodegradation and swelling rates in Alg + Fib hydrogel compared to the Alg group (p < 0.05). Increased viability was achieved in encapsulated CD144+ ECs compared to the control group (p < 0.05). IF analysis showed the biodistribution of Dil+ ECs within hydrogel two weeks after transplantation. The ratio of Ang-2/Ang-1 was statistically up-regulated in the rats that received Alg + Fib + Mel hydrogel compared to the control-matched groups (p < 0.05). Based on the data, the addition of Mel and CD144+ ECs to Alg + Fib hydrogel reduced fibrotic changes. Along with these changes, the number of vWF+ and α-SMA+ vessels was increased in the presence of Mel and CD144+ ECs. CONCLUSIONS: Co-administration of Alg + Fib with Mel and CD144+ ECs induced angiogenesis toward encapsulated cryopreserved/thawed ovarian transplants, resulting in reduced fibrotic changes.

10.
Biomater Res ; 27(1): 99, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803483

RESUMEN

BACKGROUND: In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY: Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION: Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.

11.
BioDrugs ; 34(5): 567-586, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32754790

RESUMEN

Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limitations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineering approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes using parental cell-based engineering and their application in cancer treatment and regenerative medicine.


Asunto(s)
Exosomas , Biotecnología , Sistemas de Liberación de Medicamentos , Medicina Regenerativa
12.
Int J Biol Macromol ; 108: 1339-1347, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29129628

RESUMEN

Inside the cells, proteins are surrounded by mixtures of different osmolytes. However, our current understanding of the combinatorial effects of such mixtures on the stability of proteins remains elusive. In the present study, the stability and structure of recombinant pyrazinamidase (PZase) from Mycobacterium tuberculosis were analyzed in the presence of stabilizing osmolytes (sorbitol, sucrose and glycerol) and alcohols (methanol, ethanol, isopropanol and n-propanol). The far-UV and near-UV circular dichroism (CD), intrinsic fluorescence and thermostability results indicated that methanol, unexpectedly, has stronger effect on destabilization of the enzyme compared to ethanol which has larger log P. Interestingly, the relative half-life of PZase was longer in mixtures methanol with the osmolytes, sorbitol or sucrose (expectedly), or glycerol (unexpectedly), compared to other alcohols. Molecular dynamics simulation results showed that methanol increases the flexibility of region 5-40 and loop 51-71 in the PZase, which are potentially crucial for the stability and activity of the enzyme, respectively. Our results indicated that methanol can interact with PZase via hydrophobic interactions and hydrogen bonds, and therefore resulting in destabilization of the structure of the enzyme. In addition, glycerol probably increases the stability of the enzyme in methanol by disrupting the unfavorable hydrophobic interactions and hydrogen bonds.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Metanol/farmacología , Ósmosis/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/enzimología , Conformación Proteica , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA