Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2306863120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127978

RESUMEN

The gut microbiota is a considerable source of biologically active compounds that can promote intestinal homeostasis and improve immune responses. Here, we used large expression libraries of cloned metagenomic DNA to identify compounds able to sustain an anti-inflammatory reaction on host cells. Starting with a screen for NF-κB activation, we have identified overlapping clones harbouring a heterodimeric ATP-binding cassette (ABC)-transporter from a Firmicutes. Extensive purification of the clone's supernatant demonstrates that the ABC-transporter allows for the efficient extracellular accumulation of three muropeptide precursor, with anti-inflammatory properties. They induce IL-10 secretion from human monocyte-derived dendritic cells and proved effective in reducing AIEC LF82 epithelial damage and IL-8 secretion in human intestinal resections. In addition, treatment with supernatants containing the muropeptide precursor reduces body weight loss and improves histological parameters in Dextran Sulfate Sodium (DSS)-treated mice. Until now, the source of peptidoglycan fragments was shown to come from the natural turnover of the peptidoglycan layer by endogenous peptidoglycan hydrolases. This is a report showing an ABC-transporter as a natural source of secreted muropeptide precursor and as an indirect player in epithelial barrier strengthening. The mechanism described here might represent an important component of the host immune homeostasis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Peptidoglicano/metabolismo , Intestinos/patología , Inflamación/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Antiinflamatorios/metabolismo , Sulfato de Dextran , Colitis/metabolismo , Modelos Animales de Enfermedad , Colon/metabolismo , Ratones Endogámicos C57BL
2.
Chembiochem ; 25(12): e202400235, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38642076

RESUMEN

The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Fenilalanina , Humanos , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/síntesis química , Simulación del Acoplamiento Molecular , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Dominio Catalítico , Estructura Molecular
3.
J Biomed Sci ; 31(1): 18, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287360

RESUMEN

BACKGROUND: Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS: The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS: Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION: Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Poliestirenos , Humanos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Antibacterianos/farmacología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
4.
Mol Biol Rep ; 51(1): 158, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252203

RESUMEN

BACKGROUND: Gaillardin is a potent anti-cancer sesquiterpene lactone found in Inula oculus-christi. AIM: The present study examined the effects of gaillardin on apoptosis and autophagy in the MCF-7 breast cancer cell line. METHODS: The MTT assay was used to unravel the antiproliferative effects of gaillardin on MCF-7 cells. The expression of apoptosis-related genes including CASP3, BAX, BCL2, STAT3, and JAK2, and key markers of autophagy such as ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were measured by real time-PCR method. The protein expression of Caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III was determined using western blotting. RESULTS: Gaillardin treatment significantly decreased the proliferation of MCF-7 cells with a parallel upregulation of the level of pro-apoptotic caspase-3 enzyme with no effect on Bax and Bcl2 expression. The levels of phosphorylated and active forms of JAK2 and STAT3 proteins were reduced following the treatment of MCF-7 cells with gaillardin. This sesquiterpene lactone com-pound considerably downregulated the levels of six autophagy markers, including ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III in MCF-7 cells. CONCLUSION: These data indicated the apoptosis-inducing activity of gaillardin in MCF-7 cells by a mechanism that inhibits the JAK/STAT signaling pathway. Further, autophagy inhibition was the other phenomenon caused by gaillardin in MCF-7 cells. These results can provide evidence to highlight the role of gaillardin as a novel therapeutic for the treatment of breast cancer.


Asunto(s)
Neoplasias , Sesquiterpenos , Humanos , Quinasas Janus , Células MCF-7 , Beclina-1 , Proteína X Asociada a bcl-2 , Factores de Transcripción STAT , Transducción de Señal , Apoptosis , Lactonas/farmacología , Sesquiterpenos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2 , Autofagia
5.
Proc Natl Acad Sci U S A ; 117(32): 19168-19177, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719135

RESUMEN

The emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by Ruminococcus gnavus E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains. Here we report its unique compact structure on the basis of four intramolecular thioether bridges with reversed stereochemistry introduced posttranslationally by a specific radical-SAM sactisynthase. This structure confers to the Ruminococcin C1 important clinical properties including stability to digestive conditions and physicochemical treatments, a higher affinity for bacteria than simulated intestinal epithelium, a valuable activity at therapeutic doses on a range of clinical pathogens, mediated by energy resources disruption, and finally safety for human gut tissues.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Clostridiales/química , Péptidos/química , Péptidos/farmacología , Antibacterianos/aislamiento & purificación , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Péptidos/aislamiento & purificación
6.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770654

RESUMEN

Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Apoptosis , Regulación Neoplásica de la Expresión Génica
7.
Chembiochem ; 23(24): e202200595, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36269004

RESUMEN

In 2019 four groups reported independently the development of a simplified enzymatic access to the diphosphates (IPP and DMAPP) of isopentenol and dimethylallyl alcohol (IOH and DMAOH). The former are the two universal precursors of all terpenes. We report here on an improved version of what we call the terpene mini-path as well as its use in enzymatic cascades in combination with various transferases. The goal of this study is to demonstrate the in vitro utility of the TMP in, i) synthesizing various natural terpenes, ii) revealing the product selectivity of an unknown terpene synthase, or iii) generating unnatural cyclobutylated terpenes.


Asunto(s)
Transferasas Alquil y Aril , Terpenos , Transferasas , Difosfatos
8.
Curr Top Microbiol Immunol ; 430: 247-264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-30259111

RESUMEN

The intestine is a complex organ formed of different types of cell distributed in different layers of tissue. To minimize animal experiments, for decades, researchers have been trying to develop in vitro/ex vivo systems able to mimic the cellular diversity naturally found in the gut. Such models not only help our understanding of the gut physiology but also of intestinal toxicity. This review describes the different systems used to evaluate the effects of drugs/contaminants on intestinal functions and compares their advantages and limitations. The comparison showed that the organotypic model is the best available model to perform intestinal toxicity studies, including on human tissues.


Asunto(s)
Intestinos , Animales , Humanos
9.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807485

RESUMEN

Ziziphus nummularia, a small bush of the Rhamnaceae family, has been widely used in traditional folk medicine, is rich in bioactive molecules, and has many reported pharmacological and therapeutic properties. Objective: To gather the current knowledge related to the medicinal characteristics of Z. nummularia. Specifically, its phytochemical contents and pharmacological activities in the treatment of various diseases such as cancer, diabetes, and cardiovascular diseases, are discussed. Methods: Major scientific literature databases, including PubMed, Scopus, ScienceDirect, SciFinder, Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, Henriette's Herbal Homepage, Dr. Duke's Phytochemical and Ethnobotanical Databases, were searched to retrieve articles related to the review subject. General web searches using Google and Google scholar were also utilized. The search period covered articles published between 1980 and the end of October 2021.The search used the keywords 'Ziziphus nummularia', AND ('phytochemical content', 'pharmacological properties, or activities, or effects, or roles', 'anti-inflammatory', 'anti-drought', 'anti-thermal', 'anthelmintic', 'antidiabetic',' anticancer', 'anticholinesterase', 'antimicrobial', 'sedative', 'antipyretic', 'analgesic', or 'gastrointestinal'). Results: This plant is rich in characteristic alkaloids, especially cyclopeptide alkaloids such as nummularine-M. Other phytochemicals, including flavonoids, saponins, glycosides, tannins, and phenolic compounds, are also present. These phytochemicals are responsible for the reported pharmacological properties of Z. nummularia, including anti-inflammatory, antioxidant, antimicrobial, anthelmintic, antidiabetic, anticancer, analgesic, and gastrointestinal activities. In addition, Z. nummularia has anti-drought and anti-thermal characteristics. Conclusion: Research into the phytochemical and pharmacological properties of Z. nummularia has demonstrated that this plant is a rich source of novel bioactive compounds. So far, Z. nummularia has shown a varied pharmacological profile (antioxidant, anticancer, anti-inflammatory, and cardioprotective), warranting further research to uncover the therapeutic potential of the bioactives of this plant. Taken together, Z. nummularia may represent a new potential target for the discovery of new drug leads.


Asunto(s)
Alcaloides , Ziziphus , Antioxidantes , Etnofarmacología , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/química , Ziziphus/química
10.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807517

RESUMEN

Herbal medicine has been gaining special interest as an alternative choice of treatment for several diseases, being generally accessible, cost-effective and safe, with fewer side-effects compared to chemically synthesized medicines. Over 25% of drugs worldwide are derived from plants, and surveys have shown that, when available, herbal medicine is the preferred choice of treatment. Origanum syriacum (Lamiaceae) is a widely used medicinal plant in the Middle East, both as a home and a folk remedy, and in the food and beverage industry. Origanum syriacum contains numerous phytochemical compounds, including flavonoids, phenols, essential oils, and many others. Because of its bioactive compounds, O. syriacum possesses antioxidant, antimicrobial, and antiparasitic capacities. In addition, it can be beneficial in the treatment of various diseases such as cancer, neurodegenerative disorders, and peptic ulcers. In this review, the chemical compositions of different types of extracts and essential oils from this herb will first be specified. Then, the pharmacological uses of these extracts and essential oils in various contexts and diseases will be discussed, putting emphasis on their efficacy and safety. Finally, the cellular and molecular mechanisms of O. syriacum phytochemicals in disease treatment will be described as a basis for further investigation into the plant's pharmacological role.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Origanum , Plantas Medicinales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Origanum/química , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/química , Plantas Medicinales/química
11.
Chemistry ; 27(13): 4384-4393, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284485

RESUMEN

Tyrosinase enzymes (Tys) are involved in the key steps of melanin (protective pigments) biosynthesis and molecules targeting the binuclear copper active site on tyrosinases represent a relevant strategy to regulate enzyme activities. In this work, the possible synergic effect generated by a combination of known inhibitors is studied. For this, derivatives containing kojic acid (KA) and 2-hydroxypyridine-N-oxide (HOPNO) combined with a thiosemicarbazone (TSC) moiety were synthetized. Their inhibition activities were evaluated on purified tyrosinases from different sources (mushroom, bacterial, and human) as well as on melanin production by lysates from the human melanoma MNT-1 cell line. Results showed significant enhancement of the inhibitory effects compared with the parent compounds, in particular for HOPNO-TSC. To elucidate the interaction mode with the dicopper(II) active site, binding studies with a tyrosinase bio-inspired model of the dicopper(II) center were investigated. The structure of the isolated adduct between one ditopic inhibitor (KA-TSC) and the model complex reveals that the binding to a dicopper center can occur with both chelating sites. Computational studies on model complexes and docking studies on enzymes led to the identification of KA and HOPNO moieties as interacting groups with the dicopper active site.


Asunto(s)
Agaricales , Monofenol Monooxigenasa , Agaricales/metabolismo , Quelantes , Inhibidores Enzimáticos/farmacología , Humanos , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad
12.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806791

RESUMEN

The world is on the verge of a major antibiotic crisis as the emergence of resistant bacteria is increasing, and very few novel molecules have been discovered since the 1960s. In this context, scientists have been exploring alternatives to conventional antibiotics, such as ribosomally synthesized and post-translationally modified peptides (RiPPs). Interestingly, the highly potent in vitro antibacterial activity and safety of ruminococcin C1, a recently discovered RiPP belonging to the sactipeptide subclass, has been demonstrated. The present results show that ruminococcin C1 is efficient at curing infection and at protecting challenged mice from Clostridium perfringens with a lower dose than the conventional antibiotic vancomycin. Moreover, antimicrobial peptide (AMP) is also effective against this pathogen in the complex microbial community of the gut environment, with a selective impact on a few bacterial genera, while maintaining a global homeostasis of the microbiome. In addition, ruminococcin C1 exhibits other biological activities that could be beneficial for human health, as well as other fields of applications. Overall, this study, by using an in vivo infection approach, confirms the antimicrobial clinical potential and highlights the multiple functional properties of ruminococcin C1, thus extending its therapeutic interest.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Péptidos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Bacteriocinas/química , Biopelículas/efectos de los fármacos , Clostridiales/metabolismo , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Clostridium perfringens/efectos de los fármacos , Humanos , Péptidos/química , Procesamiento Proteico-Postraduccional
13.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562701

RESUMEN

Chronic cerebral ischemia with a notable long-term cessation of blood supply to the brain tissues leads to sensorimotor defects and short- and long-term memory problems. Neuroprotective agents are used in an attempt to save ischemic neurons from necrosis and apoptosis, such as the antioxidant agent Eucalyptus. Numerous studies have demonstrated the involvement of the renin-angiotensin system in the initiation and progression of cardiovascular and neurodegenerative diseases. Candesartan is a drug that acts as an angiotensin II receptor 1 blocker. We established a rat model exhibiting sensorimotor and cognitive impairments due to chronic cerebral ischemia induced by the ligation of the right common carotid artery. Wistar male rats were randomly divided into five groups: Sham group, Untreated Ligated group, Ischemic group treated with Eucalyptus (500 mg/kg), Ischemic group treated with Candesartan (0.5 mg/kg), and Ischemic group treated with a combination of Eucalyptus and Candesartan. To evaluate the sensorimotor disorders, we performed the beam balance test, the beam walking test, and the modified sticky test. Moreover, the object recognition test and the Morris water maze test were performed to assess the memory disorders of the rats. The infarct rat brain regions were subsequently stained using the triphenyltetrazolium chloride staining technique. The rats in the Sham group had normal sensorimotor and cognitive functions without the appearance of microscopic ischemic brain lesions. In parallel, the untreated Ischemic group showed severe impaired neurological functions with the presence of considerable brain infarctions. The treatment of the Ischemic group with a combination of both Eucalyptus and Candesartan was more efficient in improving the sensorimotor and cognitive deficits (p < 0.001) than the treatment with Eucalyptus or Candesartan alone (p < 0.05), by the comparison to the non-treated Ischemic group. Our study shows that the combination of Eucalyptus and Candesartan could decrease ischemic brain injury and improve neurological outcomes.


Asunto(s)
Antihipertensivos/farmacología , Antioxidantes/farmacología , Bencimidazoles/farmacología , Compuestos de Bifenilo/farmacología , Isquemia Encefálica/tratamiento farmacológico , Eucalyptus/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Tetrazoles/farmacología , Animales , Antihipertensivos/uso terapéutico , Antioxidantes/uso terapéutico , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Peso Corporal/efectos de los fármacos , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Arteria Carótida Común/efectos de los fármacos , Arteria Carótida Común/patología , Enfermedad Crónica , Interacciones Farmacológicas , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Ratas , Reconocimiento en Psicología/efectos de los fármacos , Tetrazoles/uso terapéutico
14.
Molecules ; 26(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361588

RESUMEN

Psophocarpus tetragonolobus has long been used in traditional medicine and cuisine. In this study, Psophocarpus tetragonolobus extracts were isolated by maceration and ultrasound-assisted extraction and were evaluated for their antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The obtained results show that both extracts (maceration and ultrasound) were rich in bioactive molecules and exerted substantial antioxidant and anti-inflammatory effects. The P. tetragonolobus extracts' treatment in LPS-stimulated RAW264.7 macrophages resulted in a significant downregulation of the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß mRNA. In addition, the P. tetragonolobus extracts' treatment attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. Our observations indicate that there is no significant difference between the two studied extracts of P. tetragonolobus in terms of biological properties (specifically, antioxidant and anti-inflammatory effects. Regardless of the extraction method, P. tetragonolobus could be used for treating diseases related to oxidative stress and inflammatory reactions.


Asunto(s)
Antiinflamatorios , Antioxidantes , Fabaceae/química , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , Ondas Ultrasónicas
15.
Arch Toxicol ; 93(4): 1039-1049, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30854615

RESUMEN

Trefoil factors (TFFs) are bioactive peptides expressed by several epithelia, including the intestine, where they regulate key functions such as tissue regeneration, barrier function and inflammation. Although food-associated mycotoxins, including deoxynivalenol (DON), are known to impact many intestinal functions, modulation of TFFs during mycotoxicosis has never been investigated. Here, we analyzed the effect of DON on TFFs expression using both human goblet cells (HT29-16E cells) and porcine intestinal explants. Results showed that very low doses of DON (nanomolar range) inhibit the secretion of TFFs by human goblet cells (IC50 of 361, 387 and 243 nM for TFF1, 2 and 3, respectively) and prevent wound healing. RT-qPCR analysis demonstrated that the inhibitory effect of DON is related to a suppression of TFFs mRNA expression. Experiments conducted on porcine intestinal explants confirmed the results obtained on cells. Finally, the use of specific inhibitors of signal pathways demonstrated that DON-mediated suppression of TFFs expression mainly involved Protein Kinase R and the MAP kinases (MAPK) p38 and ERK1/2. Taken together, our results show for the first time that at very low doses, DON suppresses the expression and production of intestinal TFFs and alters wound healing. Given the critical role of TFFs in tissue repair, our results suggest that DON-mediated suppression of TFFs contributes to the alterations of intestinal integrity the caused by this toxin.


Asunto(s)
Expresión Génica/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Yeyuno/efectos de los fármacos , Factor Trefoil-3/genética , Tricotecenos/toxicidad , Animales , Células CACO-2 , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Células HT29 , Humanos , Yeyuno/inmunología , Yeyuno/metabolismo , Porcinos , Factor Trefoil-3/metabolismo
16.
Mar Drugs ; 17(9)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470685

RESUMEN

Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.


Asunto(s)
Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Helmintos/metabolismo , Aminoácidos/metabolismo , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Ecosistema , Humanos
17.
Angew Chem Int Ed Engl ; 56(52): 16515-16520, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29105983

RESUMEN

Free-radical copolymerization of cyclic ketene acetals (CKAs) and vinyl ethers (VEs) was investigated as an efficient yet simple approach for the preparation of functional aliphatic polyesters. The copolymerization of CKA and VE was first predicted to be quasi-ideal by DFT calculations. The theoretical prediction was experimentally confirmed by the copolymerization of 2-methylene-1,3-dioxepane (MDO) and butyl vinyl ether (BVE), leading to rMDO =0.73 and rBVE =1.61. We then illustrated the versatility of this approach by preparing different functional polyesters: 1) copolymers functionalized by fluorescent probes; 2) amphiphilic copolymers grafted with poly(ethylene glycol) (PEG) side chains able to self-assemble into PEGylated nanoparticles; 3) antibacterial films active against Gram-positive and Gram-negative bacteria (including a multiresistant strain); and 4) cross-linked bioelastomers with suitable properties for tissue engineering applications.

18.
Antioxidants (Basel) ; 13(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38929164

RESUMEN

Natural remedies have been indispensable to traditional medicine practices for generations, offering therapeutic solutions for various ailments. In modern times, these natural products continue to play a pivotal role in the discovery of new drugs, especially for cancer treatment. The marine ecosystem offers a wide range of plants with potential anticancer activities due to their distinct biochemical diversity and adaptation to extreme situations. The seagrass Halodule uninervis is rich in diverse bioactive metabolites that bestow the plant with various pharmacological properties. However, its anticancer activity against invasive triple-negative breast cancer (TNBC) is still poorly investigated. In the present study, the phytochemical composition of an ethanolic extract of H. uninervis (HUE) was screened, and its antioxidant potential was evaluated. Moreover, the anticancer potential of HUE against MDA-MB-231 cells was investigated along with the possible underlying mechanisms of action. Our results showed that HUE is rich in diverse phytochemicals that are known for their antioxidant and anticancer effects. In MDA-MB-231 cells, HUE targeted the hallmarks of cancer, including cell proliferation, adhesion, migration, invasion, and angiogenesis. The HUE-mediated anti-proliferative and anti-metastatic effects were associated with the downregulation of the proto-oncogenic STAT3 signaling pathway. Taken together, H. uninervis could serve as a valuable source for developing novel drugs targeting TNBC.

19.
Eur J Med Chem ; 266: 116165, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262119

RESUMEN

Melanogenesis inhibition constitutes a privileged therapeutic solution to treat skin hyperpigmentation, a major dermatological concern associated with the overproduction of melanin by human tyrosinase (hsTYR). Despite the existence of many well-known TYR (tyrosinase) inhibitors commercialized in skin formulations, their hsTYR-inhibition efficacy remains poor since most of them were investigated over mushroom tyrosinase (abTYR), a model with low homology relative to hsTYR. Considering the need for new potent hsTYR inhibitors, we designed and synthesized a series of indanones starting from 4-hydroxy compound 1a, one of the two most active derivatives reported to date against the human enzyme, together with marketed thiamidol. We observed that analogues featuring 4-amino and 4-amido-2',4'-dihydroxyindanone motifs showed two-to ten-fold increase in activity over human melanoma MNT-1 cell lysates, and a ten-fold improvement in a 4-days whole-cell experiment, compared to parent analogue 1a. Molecular docking investigation was performed for the most promising 4-amido derivatives and suggested a plausible interaction pattern with the second coordination sphere of hsTYR, notably through hydrogen bonding with Glu203, confirming their impact in the binding mode with hsTYR active site.


Asunto(s)
Melanoma , Monofenol Monooxigenasa , Humanos , Melanoma/tratamiento farmacológico , Melaninas/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/química
20.
Front Pharmacol ; 15: 1371002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529189

RESUMEN

Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA