Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 28(23): 35038-35046, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182958

RESUMEN

Nanoscale light emitting diodes (nanoLEDs, diameter < 1 µm), with active and sacrificial multi-quantum well (MQW) layers epitaxially grown via metal organic chemical vapor deposition, were fabricated and released into solution using a combination of colloidal lithography and photoelectrochemical (PEC) etching of the sacrificial MQW layer. PEC etch conditions were optimized to minimize undercut roughness, and thus limit damage to the active MQW layer. NanoLED emission was blue-shifted ∼10 nm from as-grown (unpatterned) LED material, hinting at strain relaxation in the active InGaN MQW layer. X-ray diffraction also suggests that strain relaxation occurs upon nanopatterning, which likely results in less quantum confined Stark effect. Internal quantum efficiency of the lifted nanoLEDs was estimated at 29% by comparing photoluminescence at 292K and 14K. This work suggests that colloidal lithography, combined with chemical release, could be a viable route to produce solution-processable, high efficiency nanoscale light emitters.

2.
Opt Express ; 25(14): 15778-15785, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789090

RESUMEN

Light extraction from InGaN/GaN-based multiple-quantum-well (MQW) light emitters is enhanced using a simple, scalable, and reproducible method to create hexagonally close-packed conical nano- and micro-scale features on the backside outcoupling surface. Colloidal lithography via Langmuir-Blodgett dip-coating using silica masks (d = 170-2530 nm) and Cl2/N2-based plasma etching produced features with aspect ratios of 3:1 on devices grown on semipolar GaN substrates. InGaN/GaN MQW structures were optically pumped at 266 nm and light extraction enhancement was quantified using angle-resolved photoluminescence. A 4.8-fold overall enhancement in light extraction (9-fold at normal incidence) relative to a flat outcoupling surface was achieved using a feature pitch of 2530 nm. This performance is on par with current photoelectrochemical (PEC) nitrogen-face roughening methods, which positions the technique as a strong alternative for backside structuring of c-plane devices. Also, because colloidal lithography functions independently of GaN crystal orientation, it is applicable to semipolar and nonpolar GaN devices, for which PEC roughening is ineffective.

3.
Opt Express ; 23(12): 16232-7, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193595

RESUMEN

We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA