Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 107(5): 864-881, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33031749

RESUMEN

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African ancestry (AA) experience the disease more severely and with an increased co-morbidity burden compared to European ancestry (EA) populations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity, we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to upstream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug targets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways representative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic selection.


Asunto(s)
Redes Reguladoras de Genes , Genoma Humano , Interferones/genética , Lupus Eritematoso Sistémico/etnología , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Linfocitos B/inmunología , Linfocitos B/patología , Población Negra , Bortezomib/uso terapéutico , ADN Intergénico/genética , ADN Intergénico/inmunología , Elementos de Facilitación Genéticos , Expresión Génica , Ontología de Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Compuestos Heterocíclicos/uso terapéutico , Humanos , Interferones/inmunología , Isoquinolinas/uso terapéutico , Lactamas , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Anotación de Secuencia Molecular , Análisis por Matrices de Proteínas , Carácter Cuantitativo Heredable , Población Blanca
2.
Ann Rheum Dis ; 80(3): 321-328, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33106285

RESUMEN

OBJECTIVES: Juvenile idiopathic arthritis (JIA) is the most prevalent form of juvenile rheumatic disease. Our understanding of the genetic risk factors for this disease is limited due to low disease prevalence and extensive clinical heterogeneity. The objective of this research is to identify novel JIA susceptibility variants and link these variants to target genes, which is essential to facilitate the translation of genetic discoveries to clinical benefit. METHODS: We performed a genome-wide association study (GWAS) in 3305 patients and 9196 healthy controls, and used a Bayesian model selection approach to systematically investigate specificity and sharing of associated loci across JIA clinical subtypes. Suggestive signals were followed-up for meta-analysis with a previous GWAS (2751 cases/15 886 controls). We tested for enrichment of association signals in a broad range of functional annotations, and integrated statistical fine-mapping and experimental data to identify target genes. RESULTS: Our analysis provides evidence to support joint analysis of all JIA subtypes with the identification of five novel significant loci. Fine-mapping nominated causal single nucleotide polymorphisms with posterior inclusion probabilities ≥50% in five JIA loci. Enrichment analysis identified RELA and EBF1 as key transcription factors contributing to disease risk. Our integrative approach provided compelling evidence to prioritise target genes at six loci, highlighting mechanistic insights for the disease biology and IL6ST as a potential drug target. CONCLUSIONS: In a large JIA GWAS, we identify five novel risk loci and describe potential function of JIA association signals that will be informative for future experimental works and therapeutic strategies.


Asunto(s)
Artritis Juvenil , Estudio de Asociación del Genoma Completo , Artritis Juvenil/genética , Teorema de Bayes , Sitios Genéticos , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple
3.
Hum Mol Genet ; 27(13): 2392-2404, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29912393

RESUMEN

Systemic lupus erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared with the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.


Asunto(s)
Alelos , Lupus Eritematoso Sistémico/genética , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT4/genética , Femenino , Humanos , Lupus Eritematoso Sistémico/epidemiología , Masculino , Factores de Riesgo
4.
Cytokine ; 132: 154631, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30685201

RESUMEN

BACKGROUND/PURPOSE: High serum interferon alpha (IFN-α) is an important heritable phenotype in systemic lupus erythematosus (SLE) which is involved in primary disease pathogenesis. High vs. low levels of IFN-α are associated with disease severity and account for some of the biological heterogeneity between SLE patients. The aim of the study was to replicate and fine-map previously detected genetic associations with serum IFN-α in SLE. METHODS: We previously undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci identified in this screen were selected for follow up in a large independent cohort of 1370 SLE patients (703 European-ancestry, 432 African ancestry, and 235 Amerindian ancestry). Each ancestral background was analyzed separately, and ancestry-informative markers were used to control for ancestry and admixture. RESULTS: We find a rare haplotype spanning the promoter region of EFNA5 that is strongly associated with serum IFN-α in both African-American and European-American SLE patients (OR = 3.0, p = 3.7 × 10-6). We also find SNPs in the PPM1H, PTPRM, and NRGN regions associated with IFN-α levels in European-American, Amerindian, and African-American SLE patients respectively. Many of these associations are within regulatory regions of the gene, suggesting an impact on transcription. CONCLUSION: This study demonstrates the power of molecular sub-phenotypes to reveal genetic factors involved in complex autoimmune disease. The distinct associations observed in different ancestral backgrounds emphasize the heterogeneity of molecular pathogenesis in SLE.


Asunto(s)
Interferón-alfa/sangre , Lupus Eritematoso Sistémico/genética , Efrina-A5/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Lupus Eritematoso Sistémico/sangre , Polimorfismo de Nucleótido Simple
5.
Am J Hum Genet ; 96(5): 731-9, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25865496

RESUMEN

Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Proteína Proto-Oncogénica c-ets-1/genética , Factor de Transcripción STAT1/genética , Alelos , Animales , Pueblo Asiatico , Teorema de Bayes , Genotipo , Haplotipos , Humanos , Ratones , Unión Proteica , Proteína Proto-Oncogénica c-ets-1/metabolismo , Factor de Transcripción STAT1/metabolismo
6.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096841

RESUMEN

BANK1 is a susceptibility gene for several systemic autoimmune diseases in several populations. Using the genome-wide association study (GWAS) data from Europeans (EUR) and African Americans (AA), we performed an extensive fine mapping of ankyrin repeats 1 (BANK1). To increase the SNP density, we used imputation followed by univariate and conditional analysis, combined with a haplotypic and expression quantitative trait locus (eQTL) analysis. The data from Europeans showed that the associated region was restricted to a minimal and dependent set of SNPs covering introns two and three, and exon two. In AA, the signal found in the Europeans was split into two independent effects. All of the major risk associated SNPs were eQTLs, and the risks were associated with an increased BANK1 gene expression. Functional annotation analysis revealed the enrichment of repressive B cell epigenomic marks (EZH2 and H3K27me3) and a strong enrichment of splice junctions. Furthermore, one eQTL located in intron two, rs13106926, was found within the binding site for RUNX3, a transcriptional activator. These results connect the local genome topography, chromatin structure, and the regulatory landscape of BANK1 with co-transcriptional splicing of exon two. Our data defines a minimal set of risk associated eQTLs predicted to be involved in the expression of BANK1 modulated through epigenetic regulation and splicing. These findings allow us to suggest that the increased expression of BANK1 will have an impact on B-cell mediated disease pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedades Autoinmunes/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Enfermedades Autoinmunes/patología , Sitios de Unión , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación de la Expresión Génica/genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Intrones/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo , Población Blanca
7.
Hum Mol Genet ; 24(2): 582-96, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25205108

RESUMEN

Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.


Asunto(s)
Factores Reguladores del Interferón/genética , Lupus Eritematoso Sistémico/genética , beta Carioferinas/genética , Enfermedades Autoinmunes/genética , Teorema de Bayes , Estudios de Casos y Controles , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Haplotipos , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
8.
Ann Rheum Dis ; 75(1): 242-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25180293

RESUMEN

OBJECTIVES: Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association. METHODS: Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR. RESULTS: The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10(-4), OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10(-7), OR 0.71; case-only pmeta=1.9×10(-4), OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR. CONCLUSIONS: These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.


Asunto(s)
Anticuerpos Antinucleares/sangre , Lupus Eritematoso Sistémico/genética , Receptores de Complemento 3d/genética , Adolescente , Adulto , Subgrupos de Linfocitos B/inmunología , Estudios de Casos y Controles , ADN/inmunología , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Haplotipos , Humanos , Lupus Eritematoso Sistémico/inmunología , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de Complemento 3b/biosíntesis , Medición de Riesgo/métodos , Factores de Transcripción/metabolismo , Adulto Joven
9.
Am J Hum Genet ; 90(4): 648-60, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22464253

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic heterogeneous autoimmune disorder characterized by the loss of tolerance to self-antigens and dysregulated interferon responses. The etiology of SLE is complex, involving both heritable and environmental factors. Candidate-gene studies and genome-wide association (GWA) scans have been successful in identifying new loci that contribute to disease susceptibility; however, much of the heritable risk has yet to be identified. In this study, we sought to replicate 1,580 variants showing suggestive association with SLE in a previously published GWA scan of European Americans; we tested a multiethnic population consisting of 7,998 SLE cases and 7,492 controls of European, African American, Asian, Hispanic, Gullah, and Amerindian ancestry to find association with the disease. Several genes relevant to immunological pathways showed association with SLE. Three loci exceeded the genome-wide significance threshold: interferon regulatory factor 8 (IRF8; rs11644034; p(meta-Euro) = 2.08 × 10(-10)), transmembrane protein 39A (TMEM39A; rs1132200; p(meta-all) = 8.62 × 10(-9)), and 17q21 (rs1453560; p(meta-all) = 3.48 × 10(-10)) between IKAROS family of zinc finger 3 (AIOLOS; IKZF3) and zona pellucida binding protein 2 (ZPBP2). Fine mapping, resequencing, imputation, and haplotype analysis of IRF8 indicated that three independent effects tagged by rs8046526, rs450443, and rs4843869, respectively, were required for risk in individuals of European ancestry. Eleven additional replicated effects (5 × 10(-8) < p(meta-Euro) < 9.99 × 10(-5)) were observed with CFHR1, CADM2, LOC730109/IL12A, LPP, LOC63920, SLU7, ADAMTSL1, C10orf64, OR8D4, FAM19A2, and STXBP6. The results of this study increase the number of confirmed SLE risk loci and identify others warranting further investigation.


Asunto(s)
Proteínas del Huevo/genética , Predisposición Genética a la Enfermedad , Factor de Transcripción Ikaros/genética , Factores Reguladores del Interferón/genética , Lupus Eritematoso Sistémico/genética , Proteínas de la Membrana/genética , Pueblo Asiatico/genética , Población Negra/genética , Mapeo Cromosómico , Femenino , Haplotipos/genética , Hispánicos o Latinos/genética , Humanos , Indígenas Norteamericanos/genética , Lupus Eritematoso Sistémico/etnología , Masculino , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Población Blanca/genética
10.
PLoS Genet ; 7(5): e1002079, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21637784

RESUMEN

Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P(meta) = 6.6×10(-8), OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P(meta) = 2.9×10(-7), OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P(meta) = 3.2×10(-7), OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (P(meta) = 3.5×10(-4), OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.


Asunto(s)
Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Factor H de Complemento/genética , Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple , Negro o Afroamericano/genética , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , Cromosomas Humanos Par 1/genética , Eliminación de Gen , Frecuencia de los Genes , Genotipo , Hispánicos o Latinos/genética , Humanos , Intrones , Lupus Eritematoso Sistémico/etnología , Población Blanca/genética
11.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37645953

RESUMEN

Genome-wide association studies implicate multiple loci in risk for systemic lupus erythematosus (SLE), but few contain exonic variants, rendering systematic identification of non-coding variants essential to decoding SLE genetics. We utilized SNP-seq and bioinformatic enrichment to interrogate 2180 single-nucleotide polymorphisms (SNPs) from 87 SLE risk loci for potential binding of transcription factors and related proteins from B cells. 52 SNPs that passed initial screening were tested by electrophoretic mobility shift and luciferase reporter assays. To validate the approach, we studied rs2297550 in detail, finding that the risk allele enhanced binding to the transcription factor Ikaros (IKZF1), thereby modulating expression of IKBKE. Correspondingly, primary cells from genotyped healthy donors bearing the risk allele expressed higher levels of the interferon / NF-κB regulator IKKϵ. Together, these findings define a set of likely functional non-coding lupus risk variants and identify a new regulatory pathway involving rs2297550, Ikaros, and IKKϵ implicated by human genetics in risk for SLE.

12.
Ann Rheum Dis ; 72(3): 437-44, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22904263

RESUMEN

OBJECTIVES: The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE. METHODS: We fine-mapped ≥136 SNPs in a ∼227 kb region on Xq28, containing IRAK1, MECP2 and seven adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15 783 case-control subjects derived from four different ancestral groups. RESULTS: Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at p<5×10(-8) with consistent association in subjects with African ancestry. Of these, six SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all four ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest p value in transancestral meta-analysis (p(meta )= 1.3×10(-27), OR=1.43), and thus was considered to be the most likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (p=0.0012) and healthy controls (p=0.0064). CONCLUSIONS: These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.


Asunto(s)
Cromosomas Humanos X/genética , Quinasas Asociadas a Receptores de Interleucina-1/genética , Lupus Eritematoso Sistémico/genética , Proteína 2 de Unión a Metil-CpG/genética , Grupos Raciales/genética , Secuencia de Bases , Mapeo Cromosómico , Predisposición Genética a la Enfermedad/genética , Genotipo , Haplotipos , Humanos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo
13.
Arthritis Rheum ; 64(12): 4060-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22886516

RESUMEN

OBJECTIVE: The proposed pathogenesis of the cardiac manifestations of neonatal lupus (cardiac-NL) involves maternal autoantibodies to the RNPs SSA/Ro and SSB/La, enhanced by as-yet-unknown factors that likely involve dysregulation of both inflammatory and fibrotic fetal responses. This study was designed to improve the power to detect specific associations in genes with candidate biologic functions. METHODS: Using data from our genome-wide association study of 116 Caucasian children with cardiac-NL and 3,351 Caucasian controls, we tested for enrichment of single-nucleotide polymorphism (SNP) associations in genes with candidate biologic functions related to fibrosis, immune function, apoptosis, T cell function, cell infiltration, innate immune cell function, interferon, Toll-like receptors, and calcium channels. After linkage disequilibrium pruning and exclusion of the extended HLA region, a total of 15,103 SNPs in 3,068 genes remained. RESULTS: A highly significant enrichment of P values was observed for genes related to fibrosis (P = 2.27 × 10(-9) ), apoptosis (P = 7.67 × 10(-7) ), and innate immune cell (P = 2.53 × 10(-6) ), immune (P = 5.01 × 10(-4) ), T cell (P = 2.23 × 10(-4) ), and interferon functions (P = 1.64 × 10(-3) ). The most significant non-HLA associations included the sialyltransferase gene ST8SIA2 (rs1487982; odds ratio 2.20 [95% confidence interval 1.52-3.19], P = 3.37 × 10(-5) ), the integrin gene ITGA1 (rs2432143; odds ratio 2.31 [95% confidence interval 1.54-3.45], P = 4.54 × 10(-5) ), and the complement regulator gene CSMD1 (rs7002001; odds ratio 2.41 [95% confidence interval 1.57-3.72], P = 6.33 × 10(-5) ). CONCLUSION: This study identified novel candidate genes associated with cardiac-NL and highlights the value of studying this cohort for advancing knowledge regarding the genetic etiology of this syndrome. Identification of causal alleles is expected to provide critical insight into the molecular mechanisms responsible for linking maternal autoantibodies to cardiac scarring in these fetuses/neonates.


Asunto(s)
Apoptosis/genética , Inmunidad Innata/genética , Lupus Eritematoso Sistémico/congénito , Miocardio/patología , Estudios de Casos y Controles , Fibrosis/genética , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Desequilibrio de Ligamiento/genética , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple/genética
14.
Arthritis Rheum ; 64(3): 931-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22031281

RESUMEN

OBJECTIVE: Neonatal lupus (NL) occurs in fetuses exposed to maternal anti-SSA/Ro and/or anti-SSB/La antibodies, although the mothers themselves may not manifest any clinical disease. A focus on transmission of risk factors for NL from maternal grandparents to mothers of children with NL may yield dividends toward understanding the aggregation of autoantibodies and genetic factors in affected families. This study was perforned to determine the role of maternal grandparents in the development of the autoimmune phenotype of mothers of children with NL. METHODS: Fifty-one mothers of children with cardiac and/or cutaneous NL, 48 maternal grandmothers, and 35 maternal grandfathers in the Research Registry for Neonatal Lupus were interrogated for clinical symptoms by questionnaire and underwent laboratory assessments, including determination of anti-SSA/Ro and anti-SSB/La antibody status (by enzyme-linked immunosorbent assay) and genotype at rs1800629 (TNFα) and rs7775397 (C6orf10) (allelic discrimination). The transmission disequilibrium test (TDT) was computed to test for nonrandom transmission from maternal grandparents to mothers of children with NL. RESULTS: The common phenotypic feature in mothers of children with NL was the autoantibody and not the clinical profile; 7 had lupus, 14 had Sjögren's syndrome, 7 had both, and 23 were asymptomatic. Mothers of children with NL were significantly enriched for the risk alleles at both TNFα and C6orf10. The grandparents of children with NL carried minimal burden for autoimmune disease or abnormal antibody production and were not enriched in the genetic risk factors. However, the TDT analysis showed significant excess transmission of the risk alleles at both TNFα (odds ratio [OR] 6.67, P = 3.93 × 10(-4) ) and C6orf10 (OR 35.0, P = 3.74 × 10(-5) ) to mothers of children with NL. CONCLUSION: Mothers of children with NL are enriched for the TNFα and C6orf10 risk alleles, which are preferentially inherited from the asymptomatic maternal grandparents. These findings support the hypothesis that the development of NL and genetic etiology are multigenerational.


Asunto(s)
Enfermedades Asintomáticas , Cromosomas Humanos Par 6 , Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Adulto , Anciano , Familia , Composición Familiar , Femenino , Enfermedades Genéticas Congénitas , Genotipo , Humanos , Recién Nacido , Lupus Eritematoso Sistémico/congénito , Lupus Eritematoso Sistémico/diagnóstico , Masculino , Persona de Mediana Edad , Linaje , Factores de Riesgo
15.
Arthritis Rheum ; 64(8): 2781-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22354554

RESUMEN

OBJECTIVE: In a genome-wide association study of Caucasian patients with juvenile idiopathic arthritis (JIA), we have previously described findings limited to autoimmunity loci shared by JIA and other diseases. The present study was undertaken to identify novel JIA-predisposing loci using genome-wide approaches. METHODS: The discovery cohort consisted of Caucasian JIA cases (n = 814) and local controls (n = 658) genotyped on the Affymetrix Genome-Wide SNP 6.0 Array, along with 2,400 out-of-study controls. In a replication study, we genotyped 10 single-nucleotide polymorphisms (SNPs) in 1,744 cases and 7,010 controls from the US and Europe. RESULTS: Analysis within the discovery cohort provided evidence of associations at 3q13 within C3orf1 and near CD80 (rs4688011) (odds ratio [OR] 1.37, P = 1.88 × 10(-6) ) and at 10q21 near JMJD1C (rs647989 [OR 1.59, P = 6.1 × 10(-8) ], rs12411988 [OR 1.57, P = 1.16 × 10(-7) ], and rs10995450 [OR 1.31, P = 6.74 × 10(-5) ]). Meta-analysis provided further evidence of association for these 4 SNPs (P = 3.6 × 10(-7) for rs4688011, P = 4.33 × 10(-5) for rs6479891, P = 2.71 × 10(-5) for rs12411988, and P = 5.39 × 10(-5) for rs10995450). Gene expression data on 68 JIA cases and 23 local controls showed cis expression quantitative trait locus associations for C3orf1 SNP rs4688011 (P = 0.024 or P = 0.034, depending on the probe set) and JMJD1C SNPs rs6479891 and rs12411988 (P = 0.01 or P = 0.04, depending on the probe set and P = 0.008, respectively). Using a variance component liability model, it was estimated that common SNP variation accounts for approximately one-third of JIA susceptibility. CONCLUSION: Genetic association results and correlated gene expression findings provide evidence of JIA association at 3q13 and suggest novel genes as plausible candidates in disease pathology.


Asunto(s)
Artritis Juvenil/genética , Cromosomas Humanos Par 3/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Artritis Juvenil/etnología , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/etnología , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Población Blanca/etnología
16.
Arthritis Rheum ; 64(11): 3687-94, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22886787

RESUMEN

OBJECTIVE: American Indian-Europeans, Asians, and African Americans have an excess morbidity from systemic lupus erythematosus (SLE) and a higher prevalence of lupus nephritis than do Caucasians. The aim of this study was to analyze the relationship between genetic ancestry and sociodemographic characteristics and clinical features in a large cohort of American Indian-European SLE patients. METHODS: A total of 2,116 SLE patients of American Indian-European origin and 4,001 SLE patients of European descent for whom we had clinical data were included in the study. Genotyping of 253 continental ancestry-informative markers was performed on the Illumina platform. Structure and Admixture software were used to determine genetic ancestry proportions of each individual. Logistic regression was used to test the association between genetic ancestry and sociodemographic and clinical characteristics. Odds ratios (ORs) were calculated with 95% confidence intervals (95% CIs). RESULTS: The average American Indian genetic ancestry of 2,116 SLE patients was 40.7%. American Indian genetic ancestry conferred increased risks of renal involvement (P < 0.0001, OR 3.50 [95% CI 2.63- 4.63]) and early age at onset (P < 0.0001). American Indian ancestry protected against photosensitivity (P < 0.0001, OR 0.58 [95% CI 0.44-0.76]), oral ulcers (P < 0.0001, OR 0.55 [95% CI 0.42-0.72]), and serositis (P < 0.0001, OR 0.56 [95% CI 0.41-0.75]) after adjustment for age, sex, and age at onset. However, age and sex had stronger effects than genetic ancestry on malar rash, discoid rash, arthritis, and neurologic involvement. CONCLUSION: In general, American Indian genetic ancestry correlates with lower sociodemographic status and increases the risk of developing renal involvement and SLE at an earlier age.


Asunto(s)
Indígenas Norteamericanos/genética , Indígenas Sudamericanos/genética , Lupus Eritematoso Sistémico/etnología , Lupus Eritematoso Sistémico/genética , Población Blanca/genética , Adolescente , Adulto , Niño , Femenino , Predisposición Genética a la Enfermedad/etnología , Genotipo , Humanos , Indígenas Norteamericanos/estadística & datos numéricos , Indígenas Sudamericanos/estadística & datos numéricos , Nefritis Lúpica/etnología , Nefritis Lúpica/genética , Masculino , Persona de Mediana Edad , Morbilidad , Prevalencia , Factores de Riesgo , Factores Socioeconómicos , Población Blanca/estadística & datos numéricos , Adulto Joven
17.
Arthritis Rheum ; 64(11): 3695-705, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22833143

RESUMEN

OBJECTIVE: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified >30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting NF-κB signaling. The present study was undertaken to investigate the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway. METHODS: We analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog TNIP2, in case-control populations of diverse ethnic origins. TNIP1, TNIP2, and TAX1BP1 were fine-mapped in a total of 8,372 SLE cases and 7,492 healthy controls from European-ancestry, African American, Hispanic, East Asian, and African American Gullah populations. Levels of TNIP1 messenger RNA (mRNA) and ABIN1 protein in Epstein-Barr virus-transformed human B cell lines were analyzed by quantitative reverse transcription-polymerase chain reaction and Western blotting, respectively. RESULTS: We found significant associations between SLE and genetic variants within TNIP1, but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified 2 independent risk haplotypes within TNIP1 in individuals of European ancestry that were also present in African American and Hispanic populations. Levels of TNIP1 mRNA and ABIN1 protein were reduced among subjects with these haplotypes, suggesting that they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression. CONCLUSION: Our results confirm the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Haplotipos/genética , Lupus Eritematoso Sistémico/etnología , Lupus Eritematoso Sistémico/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Negro o Afroamericano/genética , Negro o Afroamericano/estadística & datos numéricos , Asiático/genética , Asiático/estadística & datos numéricos , Linfocitos B/citología , Línea Celular Transformada , Femenino , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/etnología , Predisposición Genética a la Enfermedad/genética , Hispánicos o Latinos/genética , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Estados Unidos/epidemiología , Población Blanca/genética , Población Blanca/estadística & datos numéricos
18.
Sci Rep ; 13(1): 5339, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005464

RESUMEN

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of Asian-Ancestry (AsA) disproportionately experience more severe SLE compared to individuals of European-Ancestry (EA), including increased renal involvement and tissue damage. However, the mechanisms underlying elevated severity in the AsA population remain unclear. Here, we utilized available gene expression data and genotype data based on all non-HLA SNP associations in EA and AsA SLE patients detected using the Immunochip genotyping array. We identified 2778 ancestry-specific and 327 trans-ancestry SLE-risk polymorphisms. Genetic associations were examined using connectivity mapping and gene signatures based on predicted biological pathways and were used to interrogate gene expression datasets. SLE-associated pathways in AsA patients included elevated oxidative stress, altered metabolism and mitochondrial dysfunction, whereas SLE-associated pathways in EA patients included a robust interferon response (type I and II) related to enhanced cytosolic nucleic acid sensing and signaling. An independent dataset derived from summary genome-wide association data in an AsA cohort was interrogated and identified similar molecular pathways. Finally, gene expression data from AsA SLE patients corroborated the molecular pathways predicted by SNP associations. Identifying ancestry-related molecular pathways predicted by genetic SLE risk may help to disentangle the population differences in clinical severity that impact AsA and EA individuals with SLE.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico , Humanos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Lupus Eritematoso Sistémico/genética , Genotipo , Estudios de Casos y Controles
19.
Cell Genom ; 3(11): 100420, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020975

RESUMEN

TRAF1/C5 was among the first loci shown to confer risk for inflammatory arthritis in the absence of an associated coding variant, but its genetic mechanism remains undefined. Using Immunochip data from 3,939 patients with juvenile idiopathic arthritis (JIA) and 14,412 control individuals, we identified 132 plausible common non-coding variants, reduced serially by single-nucleotide polymorphism sequencing (SNP-seq), electrophoretic mobility shift, and luciferase studies to the single variant rs7034653 in the third intron of TRAF1. Genetically manipulated experimental cells and primary monocytes from genotyped donors establish that the risk G allele reduces binding of Fos-related antigen 2 (FRA2), encoded by FOSL2, resulting in reduced TRAF1 expression and enhanced tumor necrosis factor (TNF) production. Conditioning on this JIA variant eliminated attributable risk for rheumatoid arthritis, implicating a mechanism shared across the arthritis spectrum. These findings reveal that rs7034653, FRA2, and TRAF1 mediate a pathway through which a non-coding functional variant drives risk of inflammatory arthritis in children and adults.

20.
Arthritis Rheum ; 63(9): 2755-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21590681

RESUMEN

OBJECTIVE: T cells from patients with systemic lupus erythematosus (SLE) express increased amounts of PP2Ac, which contributes to decreased production of interleukin-2 (IL-2). Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac. METHODS: We conducted a trans-ethnic study of 8,695 SLE cases and 7,308 controls of 4 different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time polymerase chain reaction. RESULTS: A 32-kb haplotype comprising multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans, European Americans, and Asians, but not in African Americans. Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, European American, and Hispanic American populations (odds ratio 1.3 [95% confidence interval 1.14-1.31], meta-analysis P=3.8×10(-7)). In European Americans, the largest ethnic data set studied, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-double-stranded DNA, and anti-RNP antibodies. PPP2CA expression was ∼2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying the GG genotype (P=0.007). CONCLUSION: Our data provide the first evidence of an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in European Americans, Hispanic Americans, and Asians.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Polimorfismo Genético , Proteína Fosfatasa 2/genética , Adolescente , Adulto , Alelos , Pueblo Asiatico , Femenino , Estudios de Asociación Genética , Genotipo , Haplotipos , Hispánicos o Latinos , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Lupus Eritematoso Sistémico/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T/metabolismo , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA