Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078651

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Asunto(s)
Anoicis , Células de Sertoli , Animales , Masculino , Ratones , Anoicis/genética , Muerte Celular/genética , Células de Sertoli/metabolismo , Testículo/metabolismo
2.
Development ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063846

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in testis after sex determination, we have analyzed mice lacking NR5A1 in Sertoli cells (SC) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impairs the expression of genes characteristic of the SC identity (e.g., Sox9, Amh), causes SC death from E14.5 through a Trp53-independent mechanism related to anoikis, and induces disorganization of the testis cords. Together, these effects cause germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SC change their molecular identity: some acquire a "pre-granulosa-like" identity, while other revert to a "supporting progenitor-like" cell identity, most of them being "intersex" because they express both testicular and ovarian genes. Fetal Leydig cells (LC) do not display significant changes, indicating that SC are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LC were absent from the postnatal testes. In addition, adult mutant males display persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which can be explained by the loss of AMH and testosterone synthesis due to SC failure.

4.
Development ; 146(1)2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30487180

RESUMEN

In mammals, all-trans retinoic acid (ATRA) is instrumental to spermatogenesis. It is synthesized by two retinaldehyde dehydrogenases (RALDH) present in both Sertoli cells (SCs) and germ cells (GCs). In order to determine the relative contributions of each source of ATRA, we have generated mice lacking all RALDH activities in the seminiferous epithelium (SE). We show that both the SC- and GC-derived sources of ATRA cooperate to initiate and propagate spermatogenetic waves at puberty. In adults, they exert redundant functions and, against all expectations, the GC-derived source does not perform any specific roles despite contributing to two-thirds of the total amount of ATRA present in the testis. The production from SCs is sufficient to maintain the periodic expression of genes in SCs, as well and the cycle and wave of the SE, which account for the steady production of spermatozoa. The production from SCs is also specifically required for spermiation. Importantly, our study shows that spermatogonia differentiation depends upon the ATRA synthesized by RALDH inside the SE, whereas initiation of meiosis and expression of STRA8 by spermatocytes can occur without ATRA.


Asunto(s)
Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Tretinoina/metabolismo , Animales , Femenino , Masculino , Meiosis/fisiología , Ratones , Ratones Transgénicos , Epitelio Seminífero/citología , Células de Sertoli/citología , Espermatocitos/citología , Espermatogonias/citología
5.
Nature ; 537(7621): 508-514, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27626380

RESUMEN

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Genes Esenciales/genética , Genes Letales/genética , Mutación/genética , Fenotipo , Animales , Secuencia Conservada/genética , Enfermedad , Estudio de Asociación del Genoma Completo , Ensayos Analíticos de Alto Rendimiento , Humanos , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Penetrancia , Polimorfismo de Nucleótido Simple/genética , Homología de Secuencia
6.
Proc Natl Acad Sci U S A ; 114(30): E6260-E6269, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28696284

RESUMEN

Caffeine, generally known as a stimulant of gastric acid secretion (GAS), is a bitter-tasting compound that activates several taste type 2 bitter receptors (TAS2Rs). TAS2Rs are expressed in the mouth and in several extraoral sites, e.g., in the gastrointestinal tract, in which their functional role still needs to be clarified. We hypothesized that caffeine evokes effects on GAS by activation of oral and gastric TAS2Rs and demonstrate that caffeine, when administered encapsulated, stimulates GAS, whereas oral administration of a caffeine solution delays GAS in healthy human subjects. Correlation analysis of data obtained from ingestion of the caffeine solution revealed an association between the magnitude of the GAS response and the perceived bitterness, suggesting a functional role of oral TAS2Rs in GAS. Expression of TAS2Rs, including cognate TAS2Rs for caffeine, was shown in human gastric epithelial cells of the corpus/fundus and in HGT-1 cells, a model for the study of GAS. In HGT-1 cells, various bitter compounds as well as caffeine stimulated proton secretion, whereby the caffeine-evoked effect was (i) shown to depend on one of its cognate receptor, TAS2R43, and adenylyl cyclase; and (ii) reduced by homoeriodictyol (HED), a known inhibitor of caffeine's bitter taste. This inhibitory effect of HED on caffeine-induced GAS was verified in healthy human subjects. These findings (i) demonstrate that bitter taste receptors in the stomach and the oral cavity are involved in the regulation of GAS and (ii) suggest that bitter tastants and bitter-masking compounds could be potentially useful therapeutics to regulate gastric pH.


Asunto(s)
Cafeína/farmacología , Ácido Gástrico/metabolismo , Células Parietales Gástricas/fisiología , Flavonas/farmacología , Humanos , Células Parietales Gástricas/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Gusto
7.
J Cell Sci ; 130(8): 1463-1474, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28254886

RESUMEN

Tex19 genes are mammalian specific and duplicated to give Tex19.1 and Tex19.2 in some species, such as the mouse and rat. It has been demonstrated that mutant Tex19.1 males display a variable degree of infertility whereas they all upregulate MMERVK10C transposons in their germ line. In order to study the function of both paralogs in the mouse, we generated and studied Tex19 double knockout (Tex19DKO) mutant mice. Adult Tex19DKO males exhibited a fully penetrant phenotype, similar to the most severe phenotype observed in the single Tex19.1KO mice, with small testes and impaired spermatogenesis, defects in meiotic chromosome synapsis, persistence of DNA double-strand breaks during meiosis, lack of post-meiotic germ cells and upregulation of MMERVK10C expression. The phenotypic similarities to mice with knockouts in the Piwi family genes prompted us to check and then demonstrate, by immunoprecipitation and GST pulldown followed by mass spectrometry analyses, that TEX19 paralogs interact with PIWI proteins and the TEX19 VPTEL domain directly binds Piwi-interacting RNAs (piRNAs) in adult testes. We therefore identified two new members of the postnatal piRNA pathway.


Asunto(s)
Proteínas Argonautas/genética , Infertilidad Masculina/genética , Proteínas Nucleares/genética , Retroelementos/genética , Testículo/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN , Ratas , Supresión Genética
8.
Molecules ; 24(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739445

RESUMEN

The Western diet is characterized by a high consumption of heat-treated fats and oils. During deep-frying processes, vegetable oils are subjected to high temperatures which result in the formation of lipid peroxidation products. Dietary intake of oxidized vegetable oils has been associated with various biological effects, whereas knowledge about the effects of structurally-characterized lipid peroxidation products and their possible absorption into the body is scarce. This study investigates the impact of linoleic acid, one of the most abundant polyunsaturated fatty acids in vegetable oils, and its primary and secondary peroxidation products, 13-HpODE and hexanal, on genomic and metabolomic pathways in human gastric cells (HGT-1) in culture. The genomic and metabolomic approach was preceded by an up-to-six-hour exposure study applying 100 µM of each test compound to the apical compartment in order to quantitate the compounds' recovery at the basolateral side. Exposure of HGT-1 cells to either 100 µM linoleic acid or 100 µM 13-HpODE resulted in the formation of approximately 1 µM of the corresponding hydroxy fatty acid, 13-HODE, in the basolateral compartment, whereas a mean concentration of 0.20 ± 0.13 µM hexanal was quantitated after an equivalent application of 100 µM hexanal. An integrated genomic and metabolomic pathway analysis revealed an impact of the linoleic acid peroxidation products, 13-HpODE and hexanal, primarily on pathways related to amino acid biosynthesis (p < 0.05), indicating that peroxidation of linoleic acid plays an important role in the regulation of intracellular amino acid biosynthesis.


Asunto(s)
Aminoácidos/metabolismo , Genómica/métodos , Ácido Linoleico/metabolismo , Metabolómica/métodos , Hexanos/metabolismo , Humanos , Peroxidación de Lípido , Oxidación-Reducción
9.
PLoS Genet ; 11(10): e1005501, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26427057

RESUMEN

All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas Proto-Oncogénicas c-kit/genética , Espermatogonias/crecimiento & desarrollo , Factores de Transcripción/biosíntesis , Tretinoina/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Meiosis/genética , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores X Retinoide/genética , Células de Sertoli/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Factores de Transcripción/genética
10.
Biochim Biophys Acta ; 1849(2): 84-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24875094

RESUMEN

All-trans retinoic acid (atRA), the active metabolite of vitamin A, plays critical functions in spermatogenesis, a complex, highly organized and regulated process comprising three phases. During the proliferative phase, undifferentiated spermatogonia divide to maintain a stem cell population and expand a progenitor cell population, of which a fraction enters the differentiation pathway yielding primary spermatocytes. During the meiotic phase, primary spermatocytes undergo recombination, segregation and reduction by half of chromosomes to produce haploid round spermatids. During the morphogenetic, post-meiotic phase, spermatids differentiate and elongate to ultimately form spermatozoa. Studies performed during the past 20 years have significantly improved our knowledge on the location of the proteins transducing the atRA signal, on the target genes of atRA and on its mechanism of action. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Asunto(s)
Receptores de Ácido Retinoico/fisiología , Espermatogénesis , Espermatogonias/citología , Animales , Masculino , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Tretinoina/farmacología
11.
PLoS Genet ; 8(12): e1003170, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300469

RESUMEN

In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathway. Indeed, female-to-male sex reversal in XX Rspo1 mutant mice correlates with Sox9 expression, suggesting that this transcription factor induces testicular differentiation in pathological conditions. Unexpectedly, here we show that testicular differentiation can occur in XX mutants lacking both Rspo1 and Sox9 (referred to as XX Rspo1(KO)Sox9(cKO) ()), indicating that Sry and Sox9 are dispensable to induce female-to-male sex reversal. Molecular analyses show expression of both Sox8 and Sox10, suggesting that activation of Sox genes other than Sox9 can induce male differentiation in Rspo1(KO)Sox9(cKO) mice. Moreover, since testis development occurs in XY Rspo1(KO)Sox9(cKO) mice, our data show that Rspo1 is the main effector for male-to-female sex reversal in XY Sox9(cKO) mice. Thus, Rspo1 is an essential activator of ovarian development not only in normal situations, but also in sex reversal situations. Taken together these data demonstrate that both male and female sex differentiation is induced by distinct, active, genetic pathways. The dogma that considers female differentiation as a default pathway therefore needs to be definitively revised.


Asunto(s)
Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Testículo , Trombospondinas/genética , Animales , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes sry , Humanos , Masculino , Ratones , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Testículo/citología , Testículo/crecimiento & desarrollo , Trombospondinas/metabolismo , Vía de Señalización Wnt
12.
Proc Natl Acad Sci U S A ; 109(41): 16582-7, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23012458

RESUMEN

Direct evidence for a role of endogenous retinoic acid (RA), the active metabolite of vitamin A in the initial differentiation and meiotic entry of spermatogonia, and thus in the initiation of spermatogenesis is still lacking. RA is synthesized by dedicated enzymes, the retinaldehyde dehydrogenases (RALDH), and binds to and activates nuclear RA receptors (RARA, RARB, and RARG) either within the RA-synthesizing cells or in the neighboring cells. In the present study, we have used a combination of somatic genetic ablations and pharmacological approaches in vivo to show that during the first, prepubertal, spermatogenic cycle (i) RALDH-dependent synthesis of RA by Sertoli cells (SC), the supporting cells of the germ cell (GC) lineage, is indispensable to initiate differentiation of A aligned into A1 spermatogonia; (ii) RARA in SC mediates the effects of RA, possibly through activating Mafb expression, a gene whose Drosophila homolog is mandatory to GC differentiation; (iii) RA synthesized by premeiotic spermatocytes cell autonomously induces meiotic initiation through controlling the RAR-dependent expression of Stra8. Furthermore, we show that RA of SC origin is no longer necessary for the subsequent spermatogenic cycles but essential to spermiation. Altogether, our data establish that the effects of RA in vivo on spermatogonia differentiation are indirect, via SC, but direct on meiotic initiation in spermatocytes, supporting thereby the notion that, contrary to the situation in the female, RA is necessary to induce meiosis in the male.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Meiosis/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Espermatocitos/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Tretinoina/farmacología , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Diferenciación Celular/genética , Femenino , Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Hibridación in Situ , Masculino , Meiosis/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/genética , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Tretinoina/metabolismo
13.
J Biol Chem ; 288(34): 24528-39, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23839944

RESUMEN

The plasma membrane protein STRA6 is thought to mediate uptake of retinol from its blood carrier retinol-binding protein (RBP) into cells and to function as a surface receptor that, upon binding of holo-RBP, activates a JAK/STAT cascade. It was suggested that STRA6 signaling underlies insulin resistance induced by elevated serum levels of RBP in obese animals. To investigate these activities in vivo, we generated and analyzed Stra6-null mice. We show that the contribution of STRA6 to retinol uptake by tissues in vivo is small and that, with the exception of the eye, ablation of Stra6 has only a modest effect on retinoid homeostasis and does not impair physiological functions that critically depend on retinoic acid in the embryo or in the adult. However, ablation of Stra6 effectively protects mice from RBP-induced suppression of insulin signaling. Thus one biological function of STRA6 in tissues other than the eye appears to be the coupling of circulating holo-RBP levels to cell signaling, in turn regulating key processes such as insulin response.


Asunto(s)
Resistencia a la Insulina , Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Obesidad/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina A/metabolismo , Células 3T3-L1 , Animales , Ojo , Insulina/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/patología , Proteínas Plasmáticas de Unión al Retinol/genética , Transducción de Señal/genética
14.
Proc Natl Acad Sci U S A ; 108(20): 8212-7, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21531907

RESUMEN

TRIM24 (TIF1α), TRIM28 (TIF1ß), and TRIM33 (TIF1γ) are three related cofactors belonging to the tripartite motif superfamily that interact with distinct transcription factors. TRIM24 interacts with the liganded retinoic acid (RA) receptor to repress its transcriptional activity. Germ line inactivation of TRIM24 in mice deregulates RA-signaling in hepatocytes leading to the development of hepatocellular carcinoma (HCC). Here we show that TRIM24 can be purified as at least two macromolecular complexes comprising either TRIM33 or TRIM33 and TRIM28. Somatic hepatocyte-specific inactivation of TRIM24, TRIM28, or TRIM33 all promote HCC in a cell-autonomous manner in mice. Moreover, HCC formation upon TRIM24 inactivation is strongly potentiated by further loss of TRIM33. These results demonstrate that the TIF1-related subfamily of TRIM proteins interact both physically and functionally to modulate HCC formation in mice.


Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/patología , Hepatocitos/patología , Neoplasias Hepáticas/patología , Ratones , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/fisiología , Unión Proteica , Receptores de Ácido Retinoico , Proteína 28 que Contiene Motivos Tripartito
15.
Development ; 137(15): 2571-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573697

RESUMEN

The definition of embryonic potency and induction of specific cell fates are intimately linked to the tight control over TGFbeta signaling. Although extracellular regulation of ligand availability has received considerable attention in recent years, surprisingly little is known about the intracellular factors that negatively control Smad activity in mammalian tissues. By means of genetic ablation, we show that the Smad4 inhibitor ectodermin (Ecto, also known as Trim33 or Tif1gamma) is required to limit Nodal responsiveness in vivo. New phenotypes, which are linked to excessive Nodal activity, emerge from such a modified landscape of Smad responsiveness in both embryonic and extra-embryonic territories. In extra-embryonic endoderm, Ecto is required to confine expression of Nodal antagonists to the anterior visceral endoderm. In trophoblast cells, Ecto precisely doses Nodal activity, balancing stem cell self-renewal and differentiation. Epiblast-specific Ecto deficiency shifts mesoderm fates towards node/organizer fates, revealing the requirement of Smad inhibition for the precise allocation of cells along the primitive streak. This study unveils that intracellular negative control of Smad function by ectodermin/Tif1gamma is a crucial element in the cellular response to TGFbeta signals in mammalian tissues.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Smad/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Tipificación del Cuerpo , Diferenciación Celular , Cruzamientos Genéticos , Ectodermo/metabolismo , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Fenotipo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
16.
Hum Reprod ; 28(8): 2201-14, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23674551

RESUMEN

STUDY QUESTION: What is the consequence of Tex19.1 gene deletion in mice? SUMMARY ANSWER: The Tex19.1 gene is important in spermatogenesis and placenta-supported development. WHAT IS KNOWN ALREADY: Tex19.1 is expressed in embryonic stem (ES) cells, primordial germ cells (PGCs), placenta and adult gonads. Its invalidation in mice leads to a variable impairment in spermatogenesis and reduction of perinatal survival. STUDY DESIGN, SIZE, DURATION: We generated knock-out mice and ES cells and compared them with wild-type counterparts. The phenotype of the Tex19.1 knock-out mouse line was investigated during embryogenesis, fetal development and placentation as well as during adulthood. PARTICIPANTS/MATERIALS, SETTING, METHODS: We used a mouse model system to generate a mutant mouse line in which the Tex19.1 gene was deleted in the germline. We performed an extensive analysis of Tex19.1-deficient ES cells and assessed their in vivo differentiation potential by generating chimeric mice after injection of the ES cells into wild-type blastocysts. For mutant animals, a morphological characterization was performed for testes and ovaries and placenta. Finally, we characterized semen parameters of mutant animals and performed real-time RT-PCR for expression levels of retrotransposons in mutant testes and ES cells. MAIN RESULTS AND THE ROLE OF CHANCE: While Tex19.1 is not essential in ES cells, our study points out that it is important for spermatogenesis and for placenta-supported development. Furthermore, we observed an overexpression of the class II LTR-retrotransposon MMERVK10C in Tex19.1-deficient ES cells and testes. LIMITATIONS, REASONS FOR CAUTION: The Tex19.1 knock-out phenotype is variable with testis morphology ranging from severely altered (in sterile males) to almost indistinguishable compared with the control counterparts (in fertile males). This variability in the testis phenotype subsequently hampered the molecular analysis of mutant testes. Furthermore, these results were obtained in the mouse, which has a second isoform (i.e. Tex19.2), while other mammals possess only one Tex19 (e.g. in humans). WIDER IMPLICATIONS OF THE FINDINGS: The fact that one gene has a role in both placentation and spermatogenesis might open new ways of studying human pathologies that might link male fertility impairment and placenta-related pregnancy disorders. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM) (Grant Avenir), the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, the Université de Strasbourg, the Association Française contre les Myopathies (AFM) and the Fondation pour la Recherche Médicale (FRM) and Hôpitaux Universitaires de Strasbourg.The authors have nothing to disclose.


Asunto(s)
Desarrollo Fetal/genética , Proteínas Nucleares/fisiología , Placentación/genética , Espermatogénesis/genética , Animales , Blastocisto/citología , Células Madre Embrionarias , Femenino , Estratos Germinativos/citología , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Noqueados , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Embarazo , Proteínas de Unión al ARN , Testículo/patología
17.
Biomedicines ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36672706

RESUMEN

It has been established for almost 30 years that the retinoic acid receptor (RAR) signalling pathway plays essential roles in the morphogenesis of a large variety of organs and systems. Here, we used a temporally controlled genetic ablation procedure to precisely determine the time windows requiring RAR functions. Our results indicate that from E8.5 to E9.5, RAR functions are critical for the axial rotation of the embryo, the appearance of the sinus venosus, the modelling of blood vessels, and the formation of forelimb buds, lung buds, dorsal pancreatic bud, lens, and otocyst. They also reveal that E9.5 to E10.5 spans a critical developmental period during which the RARs are required for trachea formation, lung branching morphogenesis, patterning of great arteries derived from aortic arches, closure of the optic fissure, and growth of inner ear structures and of facial processes. Comparing the phenotypes of mutants lacking the 3 RARs with that of mutants deprived of all-trans retinoic acid (ATRA) synthesising enzymes establishes that cardiac looping is the earliest known morphogenetic event requiring a functional ATRA-activated RAR signalling pathway.

18.
Genesis ; 50(11): 828-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22730183

RESUMEN

To generate temporally controlled site-specific somatic mutations in the mouse eye pigment epithelium, we generated a TRP1-Cre-ER(T2) transgenic mouse line that expresses the tamoxifen-dependent Cre-ER(T2) recombinase under the control of the tyrosinase-related protein 1 (TRP1) promoter. Cre-ER(T2) transcripts were readily detected in the retinal pigment epithelium (RPE), and tamoxifen treatment of adult TRP1-Cre-ER(T2) transgenic mice induced efficient excision of floxed DNA in patches of RPE cells, in numerous epithelial cells of the iris and ciliary body, and in very few cells of the neural retina. Importantly, no excision was detected in any cells in the absence of tamoxifen treatment. Thus, the TRP1-Cre-ER(T2) mouse line provides a powerful tool to study in vivo gene functions in the mouse eye pigment epithelium.


Asunto(s)
Glicoproteínas de Membrana/genética , Mutagénesis , Oxidorreductasas/genética , Epitelio Pigmentado Ocular/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Ingeniería Genética/métodos , Integrasas/genética , Masculino , Ratones , Ratones Transgénicos , Epitelio Pigmentado Ocular/citología , Receptor alfa X Retinoide/genética
19.
Dev Biol ; 350(2): 548-58, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21163256

RESUMEN

TIF1ß is an essential mammalian transcriptional corepressor. It interacts with the heterochromatin proteins HP1 through a highly conserved motif, the HP1box, and we have previously shown that this interaction is essential for the differentiation of F9 cells to occur. Here we address the in vivo functions of the TIF1ß-HP1 interaction, by generating mice in which the TIF1ß HP1box is mutated, leading to the loss of TIF1ß interaction with HP1. The effects of the mutation were monitored in two instances, where TIF1ß is known to play key roles: early embryonic development and spermatogenesis. We find that mutating the HP1box of TIF1ß disrupts embryonic development soon after gastrulation. This effect is likely caused by the misexpression of TIF1ß targets that regulate mitotic progression and pluripotency. In contrast, in Sertoli cells, we found that the absence of TIF1ß but not its mutation in the HP1box leads to a clear defect of spermatogenesis characterized by a failure of spermatid release and a testicular degeneration. These data show that the interaction between TIF1ß and HP1 is essential for some but not all TIF1ß functions in vivo. Furthermore, we observed that TIF1ß is dispersed through the nucleoplasm of E7.0 embryos, whereas it is mainly associated with pericentromeric heterochromatin of E8.5 embryos and of Sertoli cells, an association that is lost upon TIF1ß HP1box mutation. Altogether, these data provide strong evidence that nuclear organization plays key roles during early embryonic development.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Gastrulación , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Células de Sertoli/fisiología , Espermatogénesis , Animales , Ciclo Celular , Homólogo de la Proteína Chromobox 5 , Desarrollo Embrionario , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog , Proteínas Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito
20.
J Reprod Dev ; 58(3): 360-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22447323

RESUMEN

We have previously suggested that TEX19, a mammalian-specific protein of which two paralogs exist in rodents, could be implicated in stem cell self-renewal and pluripotency. We have established here the expression profiles of Tex19.1 and Tex19.2 during mouse development and adulthood. We show that both genes are coexpressed in the ectoderm and then in primordial germ cells (PGCs). They are also coexpressed in the testis from embryonic day 13.5 to adulthood, whereas only Tex19.1 transcripts are detected in the developing and adult ovary as well as in the placenta and its precursor tissue, the ectoplacental cone. The presence of both Tex19.1 and Tex19.2 in PGCs, gonocytes and spermatocytes opens the possibility that these two genes could play redundant functions in male germ cells. Furthermore, the placental expression of Tex19.1 can explain why Tex19.1 knockout mice show embryonic lethality, in addition to testis defects.


Asunto(s)
Gónadas/metabolismo , Proteínas Nucleares/genética , Placenta/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/fisiología , Ovario/metabolismo , Embarazo , Proteínas de Unión al ARN , Espermatocitos/citología , Células Madre/citología , Testículo/metabolismo , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA