Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33766913

RESUMEN

CD4+Foxp3+ regulatory T (Treg) cells are central modulators of autoimmune diseases. However, the timing and location of Treg cell-mediated suppression of tissue-specific autoimmunity remain undefined. Here, we addressed these questions by investigating the role of tumor necrosis factor (TNF) receptor 2 (TNFR2) signaling in Treg cells during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We found that TNFR2-expressing Treg cells were critical to suppress EAE at peak disease in the central nervous system but had no impact on T cell priming in lymphoid tissues at disease onset. Mechanistically, TNFR2 signaling maintained functional Treg cells with sustained expression of CTLA-4 and Blimp-1, allowing active suppression of pathogenic T cells in the inflamed central nervous system. This late effect of Treg cells was further confirmed by treating mice with TNF and TNFR2 agonists and antagonists. Our findings show that endogenous Treg cells specifically suppress an autoimmune disease by acting in the target tissue during overt inflammation. Moreover, they bring a mechanistic insight to some of the adverse effects of anti-TNF therapy in patients.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Médula Ósea/patología , Antígeno CTLA-4/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/metabolismo
2.
Eur J Immunol ; 50(7): 972-985, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32012260

RESUMEN

Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.


Asunto(s)
Activación de Linfocitos , FN-kappa B/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Ratones , Ratones Noqueados , FN-kappa B/genética , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal/genética , Linfocitos T Reguladores/citología
3.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26838788

RESUMEN

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Músculo Liso Vascular/metabolismo , Células Madre/metabolismo , Remodelación Vascular/fisiología , Animales , Células Cultivadas , Humanos , Hipertensión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/patología , Ratas , Células Madre/patología
4.
J Immunol ; 196(5): 2109-18, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826251

RESUMEN

CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell therapy is a promising approach for the treatment of autoimmune diseases. To be effective, Treg cells should be in an activated state in the target tissue. This can be achieved by systemic administration of Ag-specific Treg cells, which are difficult to produce in conditions that can be translated to the clinic. In this paper, we propose an alternative approach consisting of in situ injection of preactivated polyclonal Treg cells that would exert bystander suppression in the target tissue. We show that polyclonal Treg cells suppressed uveitis in mice as efficiently as Ag-specific Treg cells but only when preactivated and administered in the vitreous. Uveitis control was correlated with an increase of IL-10 and a decrease of reactive oxygen species produced by immune cell infiltrates in the eye. Thus, our results reveal a new mechanism of Treg cell-mediated suppression and a new Treg cell therapy approach.


Asunto(s)
Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Linfocitos T Reguladores/trasplante , Uveítis/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Linfocitos T Reguladores/inmunología
5.
J Immunol ; 194(3): 999-1010, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25548233

RESUMEN

CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a major role in peripheral tolerance. Multiple environmental factors and cell types affect their biology. Among them, activated effector CD4(+) T cells can boost Treg cell expansion through TNF or IL-2. In this study, we further characterized this effector T (Teff) cell-dependent Treg cell boost in vivo in mice. This phenomenon was observed when both Treg and Teff cells were activated by their cognate Ag, with the latter being the same or different. Also, when Treg cells highly proliferated on their own, there was no additional Treg cell boost by Teff cells. In a condition of low inflammation, the Teff cell-mediated Treg cell boost involved TNF, OX40L, and plasmacytoid dendritic cells, whereas in a condition of high inflammation, it involved TNF and IL-2. Thus, this feedback mechanism in which Treg cells are highly activated by their Teff cell counterparts depends on the immune context for its effectiveness and mechanism. This Teff cell-dependent Treg cell boost may be crucial to limit inflammatory and autoimmune responses.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interleucina-2/metabolismo , Receptores OX40/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Comunicación Celular , Inmunofenotipificación , Inflamación/inmunología , Inflamación/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Ligando OX40/metabolismo , Fenotipo , Unión Proteica , Transducción de Señal
6.
Eur J Immunol ; 42(3): 760-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22105329

RESUMEN

In humanized mice, the T-cell repertoire is derived from genetically identical human progenitors in distinct animals. Thus, careful comparison of the T-cell repertoires of humanized mice with those of humans may reveal the contribution of genetic determinism on T-cell repertoire formation. Here, we performed a comprehensive assessment of the distribution of V-J combinations of the human ß chain of the T-cell receptor (hTRBV) in NOD.SCID.γc(-/-) (NSG) humanized mice. We observed that numerous V-J combinations were equally distributed in the thymus and in the periphery of humanized mice compared with human references. A global analysis of the data, comparing repertoire perturbation indices in humanized NSG mice and unrelated human PBMCs, reveals that 50% of the hTRBV families significantly overlapped. Using multivariate ranking and bootstrap analyses, we found that 18% of all possible V-J combinations contributed close to 50% of the expressed diversity, with significant over-representation of BV5-J1.1+1.2 and BV6-J1.1+1.2 rearrangements. Finally, comparison of CD3(-) and CD3(+) thymocyte repertoires indicated that the observed V-J combination overlap was already present before TCR-MHC selection in the thymus. Altogether, our results show that half of the T-cell repertoire combinatorial diversity in humans is genetically determined.


Asunto(s)
Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Animales Recién Nacidos , ADN/química , ADN/genética , Citometría de Flujo , Reordenamiento Génico/genética , Reordenamiento Génico/inmunología , Humanos , Región de Unión de la Inmunoglobulina/genética , Región de Unión de la Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Modelos Lineales , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Análisis Multivariante , Reacción en Cadena de la Polimerasa , Organismos Libres de Patógenos Específicos , Recombinación V(D)J/genética , Recombinación V(D)J/inmunología
8.
J Gene Med ; 14(2): 90-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22228582

RESUMEN

BACKGROUND: Gene transfer in the thymus, based on HIV-derived lentiviral vectors, is a promising avenue for modulation of T cell selection and autoimmunity. However, the impact of intrathymic (IT) injections on an antigen-specific immune response elicited in the periphery of normal mice has not been investigated yet. METHODS: Highly concentrated stocks of lentiviral vectors expressing the soluble form of hemaglutinin of the influenza virus (LvHA) were injected in the thymus of normal BALB/c mice. The CD4 and CD8-mediated immune responses to HA after peripheral immunization were measured by various parameters. RESULTS: We first show that a lentiviral vector expressing the luciferase was detected for at least 2 months after IT-injections. We then show that the LvHA vector could elicit a functional CD4- and CD8-T cell-mediated immune responses in the peripheral lymphoid organs of BALB/c mice. IT-injection of the LvHA vector significantly curbed this response: lower numbers of transferred HA-specific CD4(+) T cells were found in LvHA-injected compared to control animals. Furthermore, lower frequencies of HA-specific CD8(+) T cells, interferon γ-producing cells and cytotoxic cells were detected from 3 weeks to 3 months in LvHA-injected mice compared to controls. However, these reduced CD8-mediated responses were not increased after depletion of CD25(+) cells in vitro or in vivo. CONCLUSIONS: The results obtained in the present study show that injection of the LvHA lentiviral vector significantly curtailed the immune response to the same antigen in the periphery. Increased selection of HA-specific regulatory T cells and negative selection of HA-specific CD8(+) T cell precursors may explain the results. Our work establish the feasibility of IT-injections of lentiviral vectors to manipulate T cell tolerance in the thymus of normal mice, for basic and pre-clinical research.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular/inmunología , Timo/metabolismo , Animales , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Fluoresceínas , Vectores Genéticos/administración & dosificación , Inyecciones , Lentivirus , Mediciones Luminiscentes , Ratones , Ratones Endogámicos BALB C , Succinimidas , Timo/inmunología
9.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291815

RESUMEN

Radiotherapy for localized prostate cancer has increased the cure and survival rates of patients. Besides its local tumoricidal effects, ionizing radiation has been linked to mechanisms leading to systemic immune activation, a phenomenon called the abscopal effect. In this study, we performed gene expression analysis on peripheral blood from prostate cancer patients obtained post- radiotherapy and showed that 6 genes, including CCR7, FCGR2B, BTLA, CD6, CD3D, and CD3E, were down-regulated by a range of 1.5-2.5-fold as compared to pre-radiotherapy samples. The expression of the signature consisting of these six genes was also significantly lower post- vs. pre-radiotherapy. These genes are involved in various tumor-promoting immune pathways and their down-regulation post-radiotherapy could be considered beneficial for patients. This is supported by the fact that low mRNA expression levels for the 6-gene signature in the prostate tumor tissue was linked to better survival. Importantly, we report that this 6-gene signature strongly correlated with a favorable prognosis regardless of poor standard clinicopathological parameters (i.e., Gleason score ≥ 8 and T3 (including T3a and T3b). Our pioneering data open the possibility that the 6-gene signature identified herein may have a predictive value, but this requires further long-term studies.

10.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208480

RESUMEN

The herpes virus entry mediator (HVEM) delivers a negative signal to T cells mainly through the B and T lymphocyte attenuator (BTLA) molecule. Thus, HVEM/BTLA may represent a novel immune checkpoint during an anti-tumor immune response. However, a formal demonstration that HVEM can represent a target for cancer immunotherapy is still lacking. Here, we first showed that HVEM and BTLA mRNA expression levels were associated with a worse progression-free interval in patients with prostate adenocarcinomas, indicating a detrimental role for the HVEM/BTLA immune checkpoint during prostate cancer progression. We then showed that administration of a monoclonal antibody to human HVEM resulted in a twofold reduction in the growth of a prostate cancer cell line in NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that the therapeutic effect of the mAb depended on HVEM expression by the tumor, with no effect on graft vs. host disease or activation of human T cells in the spleen. In contrast, the proliferation and number of tumor-infiltrating leukocytes increased following treatment, and depletion of CD8+ T cells partly alleviated treatment's efficacy. The expression of genes belonging to various T cell activation pathways was enriched in tumor-infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM expressed by the tumor is an immune checkpoint for T cell-mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.

11.
Eur J Immunol ; 39(8): 2136-45, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19572320

RESUMEN

The diversity of the human immune repertoire and how it relates to a functional immune response has not yet been studied in detail in humanized NOD.SCID.gammac(-/-) immunodeficient mice. Here, we used a multiplex PCR on genomic DNA to quantify the combinatorial diversity of all possible V-J rearrangements at the TCR-beta chain and heavy chain Ig locus. We first show that the combinatorial diversity of the TCR-beta chain generated in the thymus was well preserved in the periphery, suggesting that human T cells were not vastly activated in mice, in agreement with phenotypic studies. We then show that the combinatorial diversity in NOD.SCID.gammac(-/-) mice reached 100% of human reference samples for both the TCR and the heavy chain of Ig. To document the functionality of this repertoire, we show that a detectable but weak HLA-restricted cellular immune response could be elicited in reconstituted mice after immunization with an adenoviral vector expressing HCV envelope glycoproteins. Altogether, our results suggest that humanized mice express a diversified repertoire and are able to mount antigen-specific immune responses.


Asunto(s)
Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T/inmunología , Animales , Animales Recién Nacidos , Células Clonales , Femenino , Citometría de Flujo , Hepacivirus/inmunología , Humanos , Inmunidad Celular/inmunología , Inmunización/métodos , Cadenas Pesadas de Inmunoglobulina/genética , Inmunofenotipificación , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Reacción en Cadena de la Polimerasa , Linfocitos T/citología , Linfocitos T/metabolismo
12.
Front Immunol ; 10: 2908, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921167

RESUMEN

The induction of specific and sustainable tolerance is a challenging issue in organ transplantation. The discovery of the immunosuppressive properties of apoptotic cells in animal models has paved the way for their use in human transplantation. In this work, we aimed to define a stable, reproducible, and clinically compatible production procedure of human apoptotic cells (Apo-cells). Using a clinically approved extracorporeal photopheresis technique, we have produced and characterized phenotypically and functionally human apoptotic cells. These Apo-cells have immunosuppressive properties proved in vitro and in vivo in NOD/SCID/γC mice by their capacity to modulate an allogeneic response following both a direct and an indirect antigen presentation. These results brought the rationale for the use of Apo-cells in tolerance induction protocol for organ transplantation.


Asunto(s)
Presentación de Antígeno , Apoptosis/inmunología , Tolerancia Inmunológica , Fotoféresis , Animales , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID
13.
Oncoimmunology ; 8(7): 1596005, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143518

RESUMEN

Mice reconstituted with a human immune system and bearing human tumors represent a promising model for developing novel cancer immunotherapies. Here, we used mass cytometry and multi-parametric flow cytometry to characterize human leukocytes infiltrating a human breast cancer tumor model in immunocompromised NOD.SCID.γc-null mice reconstituted with a human immune system and compared it to samples of breast cancer patients. We observed highly activated human CD4+ and CD8+ T cells in the tumor, as well as minor subsets of innate immune cells in both settings. We also report that ICOS+ CD4+ regulatory T cells (Treg) were enriched in the tumor relative to the periphery in humanized mice and patients, providing a target to affect Treg and tumor growth. Indeed, administration of a neutralizing mAb to human ICOS reduced Treg proportions and numbers and improved CD4 + T cell proliferation in humanized mice. Moreover, a combination of the anti-ICOS mAb with cyclophosphamide reduced tumor growth, and that was associated with an improved CD8 to Treg ratio. Depletion of human CD8+ T cells or of murine myeloid cells marginally affected the effect of the combination therapy. Altogether, our results indicate that a combination of anti-ICOS mAb and chemotherapy controls tumor growth in humanized mice, opening new perspectives for the treatment of breast cancer. One sentence summary: Targeting ICOS in combination with chemotherapy is a promising strategy to improve tumor immunity in humans.

14.
J Clin Invest ; 115(8): 2287-95, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16075064

RESUMEN

SCID patients have been successfully treated by administration of ex vivo gene-corrected stem cells. However, despite its proven efficacy, such treatment carries specific risks and difficulties. We hypothesized that some of these drawbacks may be overcome by in situ gene correction of T lymphoid progenitors in the thymus. Indeed, in vivo intrathymic transfer of a gene that provides a selective advantage for transduced prothymocytes should result in the generation of functional T lymphocyte progeny, allowing long-term immune reconstitution. We assessed the feasibility of this approach in a murine model of ZAP-70-deficient SCID. A T cell-specific ZAP-70-expressing lentiviral vector was injected into thymi of adult ZAP-70-/- mice without prior conditioning. This resulted in the long-term differentiation of mature TCR-alphabeta+ thymocytes, indicating that the vector had integrated into progenitor cells. Moreover, peripheral ZAP-70-expressing T cells demonstrated a partially diversified receptor repertoire and were responsive to alloantigens in vitro and in vivo. Improved treatment efficacy was achieved in infant ZAP-70-/- mice, in which the thymus is proportionately larger and a higher percentage of prothymocytes are in cycle. Thus, intrathymic injection of a lentiviral vector could represent a simplified and potentially safer alternative to ex vivo gene-modified hematopoietic stem cell transplantation for gene therapy of T cell immunodeficiencies.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Lentivirus , Proteínas Tirosina Quinasas/genética , Inmunodeficiencia Combinada Grave/terapia , Timo , Transducción Genética , Animales , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/inmunología , Humanos , Linfopoyesis/genética , Linfopoyesis/inmunología , Ratones , Ratones Noqueados , Proteínas Tirosina Quinasas/inmunología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos T/inmunología , Timo/inmunología , Transducción Genética/métodos , Proteína Tirosina Quinasa ZAP-70
15.
Mol Immunol ; 44(4): 267-75, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16630660

RESUMEN

In humans, the CD4 molecule is expressed on a subset of T-cells and at various levels on myeloid and lymphoid cells. The mechanisms regulating human CD4 gene expression are yet poorly understood. We speculated that the CD4 silencer, which operates in CD8+ T-cells to repress CD4 expression, could be responsible for CD4 repression in human lymphoid non-T-cells. To test this possibility, we used lentiviral vectors carrying CD4 regulatory sequences, with or without the silencer element, to express an eGFP reporter gene. We observed that (i) in the absence of the silencer element, eGFP expression was detected in CD34+-derived B- and NK-cells that otherwise lacked endogenous CD4 mRNA, indicating active repression of the CD4 regulatory sequences and (ii) the addition of the CD4 silencer could repress eGFP expression in these same cells, as well as in human B-cells generated in vivo in NOD/SCID mice. Collectively, our results suggest that beyond its well-characterized function in T-cells, the CD4 silencer also regulates CD4 gene expression in human lymphoid non-T-cells.


Asunto(s)
Antígenos CD4/genética , Regulación de la Expresión Génica , Tejido Linfoide/inmunología , Elementos Silenciadores Transcripcionales , Antígenos CD4/inmunología , Línea Celular , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica/inmunología , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Regiones Promotoras Genéticas , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología
16.
Front Immunol ; 8: 756, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713380

RESUMEN

BACKGROUND: Graft-vs-host disease (GVHD) is a major complication of allogenic bone marrow transplantation (BMT). Targeting costimulatory molecules with antagonist antibodies could dampen the excessive immune response that occurs, while preserving the beneficial graft vs leukemia (GVL) of the allogeneic response. Previous studies using a mouse model of GVHD have shown that targeting the T-cell Inducible COStimulator (ICOS, CD278) molecule is beneficial, but it is unclear whether the same applies to human cells. METHODS: Here, we assessed whether a monoclonal antibody (mAb) to human ICOS was able to antagonize the costimulatory signal delivered in vivo to human T cells. To test this hypothesis, we used a xenogeneic model of GVHD where human peripheral blood mononuclear cells were adoptively transferred in immunocompromised NOD.SCID.gc-null mice (NSG). RESULTS: In this model, control mice invariably lost weight and died by day 50. In contrast, 65% of the mice receiving a single injection of the anti-hICOS mAb survived beyond 100 days. Moreover, a significant improvement in survival was obtained in a curative xeno-GVHD setting. Mechanistically, administration of the anti-hICOS mAb was associated with a strong reduction in perivascular infiltrates in liver and lungs and reduction in frequencies and numbers of human T cells in the spleen. In addition, the mAb prevented T-cell expansion in the blood during xeno-GVHD. Importantly, GVHD-protected mice retained the ability to control the P815 mastocytoma cell line, mimicking GVL in humans. CONCLUSION: A mAb-targeting human ICOS alleviated GVHD without impairing GVL in a xenograft murine model. Thus, ICOS represents a promising target in the management of BMT, preventing GVHD while preserving GVL.

17.
Oncotarget ; 8(62): 104733-104744, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29285209

RESUMEN

FOXP3+ regulatory T cell (Treg) based cellular therapies represent promising therapeutic options in autoimmunity, allergy, transplantation and prevention of Graft Versus Host (GVH) Disease. Among human FOXP3-expressing CD4+T cells, only the CD45RA+ naïve Treg (nTreg) subset is suitable for in vitro expansion. However, FoxP3 expression decays in cells using currently described culture protocols. Rapamycin alone was not able to prevent FOXP3 loss in nTregs cells, as only a half of them maintained FOXP3 expression after 14 days of culture. In contrast we report a novel combined drug regimen that can drastically stabilize FOXP3 expression in cultured Tregs. IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors act in synergy to allow expansion of human regulatory T cells with sustained high expression of FOXP3 and CD15s with potent suppressive capacities in vitro and control of murine xeno-GVH reactions. Of note, an additional subsequent infusion of expanded nTreg cells did not improve survival of mice. Combination of IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors is optimal for the expansion in vitro of pure effective nTreg maintaining high levels of FOXP3 for therapeutic purposes.

18.
Curr Gene Ther ; 16(1): 56-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26725877

RESUMEN

Immunodeficient mice reconstituted with human CD4(+) T cells, which can be achieved either by transfer of mature cells or immature progenitors, represent the only animal model to study HIV-1 infection of human lymphocytes in vivo. However, the immunocompromised status of most of these models currently rule out their use for vaccine studies. Nevertheless, the model might be ideally suited for HIV-1 gene therapy studies since eliciting an efficient anti-viral immune response is not the primary end-point. Rather, HIV-1 gene therapy should protect CD4(+) T cells from HIV-1- induced deletion and/or reduced viral replication. Here, we describe recent advancements in the field of HIV-1 gene therapy, focusing on tools and targets validated in various models of humanized mice. From the analysis of this literature, it appears that strategies targeting viral entry, by means of neutralizing antibodies or fusion inhibitors, are the most promising so far. Indeed, strategies targeting viral entry have moved to the clinic with encouraging results. Thus, humanized mice should be considered as the prime model to devise the safer and most effective HIV-1 gene therapy strategy.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/métodos , Infecciones por VIH/terapia , VIH-1/genética , Internalización del Virus , Animales , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos , Ratones , Ratones SCID , Terapia Molecular Dirigida/métodos , Receptores CCR5/genética
19.
PLoS One ; 11(4): e0153682, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27077371

RESUMEN

The IL-2/JAK3/STAT-5 signaling pathway is involved on the initiation and maintenance of the transcription factor Foxp3 in regulatory T cells (Treg) and has been associated with demethylation of the intronic Conserved Non Coding Sequence-2 (CNS2). However, the role of the JAK/STAT pathway in controlling Foxp3 in the short term has been poorly investigated. Using two different JAK/STAT pharmacological inhibitors, we observed a detectable loss of Foxp3 after 10 min. of treatment that affected 70% of the cells after one hour. Using cycloheximide, a general inhibitor of mRNA translation, we determined that Foxp3, but not CD25, has a high turnover in IL-2 stimulated Treg. This reduction was correlated with a rapid reduction of Foxp3 mRNA. This loss of Foxp3 was associated with a loss in STAT-5 binding to the CNS2, which however remains demethylated. Consequently, Foxp3 expression returns to normal level upon restoration of basal JAK/STAT signaling in vivo. Reduced expression of several genes defining Treg identity was also observed upon treatment. Thus, our results demonstrate that Foxp3 has a rapid turn over in Treg partly controlled at the transcriptional level by the JAK/STAT pathway.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Janus Quinasa 3/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/citología , Animales , Metilación de ADN/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Humanos , Intrones/genética , Janus Quinasa 3/antagonistas & inhibidores , Ratones , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo
20.
PLoS One ; 10(9): e0138420, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407077

RESUMEN

HIV replication follows a well-defined pattern during the acute phase of the infection in humans. After reaching a peak during the first few weeks after infection, viral replication resolves to a set-point thereafter. There are still uncertainties regarding the contribution of CD8(+) T cells in establishing this set-point. An alternative explanation, supported by in silico modeling, would imply that viral replication is limited by the number of available targets for infection, i.e. CD4(+)CCR5(+) T cells. Here, we used NOD.SCID.gc(-/-) mice bearing human CD4(+)CCR5(+) and CD8(+) T cells derived from CD34(+) progenitors to investigate the relative contribution of both in viral control after the peak. Using low dose of a CCR5-tropic HIV virus, we observed an increase in viral replication followed by "spontaneous" resolution of the peak, similar to humans. To rule out any possible role for CD8(+) T cells in viral control, we infected mice in which CD8(+) T cells had been removed by a depleting antibody. Globally, viral replication was not affected by the absence of CD8(+) T cells. Strikingly, resolution of the viral peak was equally observed in mice with or without CD8(+) T cells, showing that CD8(+) T cells were not involved in viral control in the early phase of the infection. In contrast, a marked and specific loss of CCR5-expressing CD4(+) T cells was observed in the spleen and in the bone marrow, but not in the blood, of infected animals. Our results strongly suggest that viral replication during the acute phase of the infection in humanized mice is mainly constrained by the number of available targets in lymphoid tissues rather than by CD8(+) T cells.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Replicación Viral/inmunología , Reacción de Fase Aguda/inmunología , Reacción de Fase Aguda/virología , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Células Cultivadas , Células HEK293 , Infecciones por VIH/sangre , Infecciones por VIH/patología , VIH-1/inmunología , Humanos , Recuento de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Receptores CCR5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA