Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38096955

RESUMEN

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Células Estrelladas Hepáticas , Proteína-Lisina 6-Oxidasa , Microambiente Tumoral , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/enzimología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/enzimología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimología , Regulación Neoplásica de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/enzimología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/enzimología , Fosforilación Oxidativa , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Transducción de Señal
2.
Gut ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857989

RESUMEN

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.

3.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G583-G590, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502914

RESUMEN

Hepatorenal syndrome (HRS) is associated with a dismal prognosis in patients with cirrhosis, and therapeutic options are limited. Biomarkers to identify patients with poor response to therapy are urgently needed. This study aimed to evaluate the predictive value of serum levels of uromodulin (sUMOD) in patients with cirrhosis and HRS treated with terlipressin and albumin (T/A). In total, 156 patients [81 patients with HRS treated with T/A, 42 patients with cirrhosis without kidney injury, and 33 patients with cirrhosis with prerenal acute kidney injury (AKI)] were included. sUMOD levels were analyzed by ELISA. Patients with HRS were prospectively followed for the composite endpoint of hemodialysis-/liver transplantation-free survival (HD/LTx-free survival). Of the 81 patients with HRS, 40 had HRS type 1 and 41 type 2. In the cohort of patients with HRS treated with T/A, median sUMOD level was 100 ng/mL (IQR 64; 144). sUMOD differed significantly between patients with HRS compared with patients without AKI (P = 0.001) but not between patients with HRS and prerenal AKI (P = 0.9). In multivariable analyses, sUMOD levels in the lowest quartile were independently associated with a lower rate of complete response to T/A (OR 0.042, P = 0.008) and a higher risk for reaching the composite endpoint of HD/LTX-free survival (HR 2.706, P = 0.013) in patients with HRS type 2 treated with T/A. In contrast, sUMOD was not significantly associated with these outcomes in patients with HRS type 1. sUMOD may be a valuable biomarker for identifying patients with HRS type 2 treated with T/A to predict response and prognosis.NEW & NOTEWORTHY Biomarkers identifying patients with hepatorenal syndrome (HRS) and poor response to therapy are urgently needed. In this study, lower serum uromodulin (sUMOD) levels were associated with poorer response to therapy with terlipressin and albumin and consequently with poorer prognosis in patients with HRS type 2. In patients with HRS type 1, there was no association between sUMOD and poorer prognosis.


Asunto(s)
Lesión Renal Aguda , Síndrome Hepatorrenal , Humanos , Síndrome Hepatorrenal/terapia , Síndrome Hepatorrenal/tratamiento farmacológico , Terlipresina/uso terapéutico , Uromodulina , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/tratamiento farmacológico , Pronóstico , Biomarcadores , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/terapia , Albúminas
4.
Biomedicines ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38255305

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type characterized by a marked desmoplastic tumor stroma that is formed under the influence of transforming growth factor (TGF)-ß. Data from mouse models of pancreatic cancer have revealed that transcriptionally active p73 (TAp73) impacts the TGF-ß pathway through activation of Smad4 and secretion of biglycan (Bgn). However, whether this pathway also functions in human PDAC cells has not yet been studied. Here, we show that RNA interference-mediated silencing of TAp73 in PANC-1 cells strongly reduced the stimulatory effect of TGF-ß1 on BGN. TAp73-mediated regulation of BGN, and inhibition of TGF-ß signaling through a (Smad-independent) ERK pathway, are reminiscent of what we previously observed for the small GTPase, RAC1b, prompting us to hypothesize that in human PDAC cells TAp73 and RAC1b are part of the same tumor-suppressive pathway. Like TAp73, RAC1b induced SMAD4 protein and mRNA expression. Moreover, siRNA-mediated knockdown of RAC1b reduced TAp73 mRNA levels, while ectopic expression of RAC1b increased them. Inhibition of BGN synthesis or depletion of secreted BGN from the culture medium reproduced the promigratory effect of RAC1b or TAp73 silencing and was associated with increased basal and TGF-ß1-dependent ERK activation. BGN also phenocopied the effects of RAC1b or TAp73 on the expression of downstream effectors, like the EMT markers E-cadherin, Vimentin and SNAIL, as well as on negative regulation of the ALK2-SMAD1/5 arm of TGF-ß signaling. Collectively, we showed that tumor-suppressive TAp73-Smad4-Bgn signaling also operates in human cells and that RAC1b likely acts as an upstream activator of this pathway.

5.
Biology (Basel) ; 13(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38666828

RESUMEN

Protein arginine N-methyltransferase 5 (PRMT5) has been identified as a potential therapeutic target for various cancer types. However, its role in regulating the hepatocellular carcinoma (HCC) transcriptome remains poorly understood. In this study, publicly available databases were employed to investigate PRMT5 expression, its correlation with overall survival, targeted pathways, and genes of interest in HCC. Additionally, we utilized in-house generated NGS data to explore PRMT5 expression in dysplastic nodules compared to hepatocellular carcinoma. Our findings revealed that PRMT5 is significantly overexpressed in HCC compared to normal liver, and elevated expression correlates with poor overall survival. To gain insights into the mechanism driving PRMT5 overexpression in HCC, we analyzed promoter CpG islands and methylation status in HCC compared to normal tissues. Pathway analysis of PRMT5 knockdown in the HCC cells revealed a connection between PRMT5 expression and genes related to the HIF1α pathway. Additionally, by filtering PRMT5-correlated genes within the HIF1α pathway and selecting up/downregulated genes in HCC patients, we identified Ras-related nuclear protein (RAN) as a target associated with overall survival. For the first time, we report that PRMT5 is implicated in the regulation of HIF1A and RAN genes, suggesting the potential prognostic utility of PRMT5 in HCC.

6.
Cell Signal ; 119: 111166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588876

RESUMEN

The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.


Asunto(s)
Neoplasias Colorrectales , Péptidos y Proteínas de Señalización Intercelular , Proteína-Arginina N-Metiltransferasas , Humanos , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Doxorrubicina/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Resistencia a Antineoplásicos/efectos de los fármacos
7.
Sci Rep ; 14(1): 340, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172514

RESUMEN

Obstructive sleep apnea syndrome (OSAS) and obesity go hand in hand in the majority of patients and both are associated with a systemic inflammation, immune disturbance and comorbidities such as cardiovascular disease. However, the unambiguous impact of OSAS and obesity on the individual inflammatory microenvironment and the immunological consequences of human monocytes has not been distinguished yet. Therefore, aim of this study was to investigate the impact of OSAS and obesity related factors on the inflammatory microenvironment by performing flow cytometric whole blood measurements of CD14/CD16 monocyte subsets in normal weight OSAS patients, patients with obesity but without OSAS, and patients with OSAS and obesity, compared to healthy donors. Moreover, explicitly OSAS and obesity related plasma levels of inflammatory mediators adiponectin, leptin, lipocalin and metalloproteinase-9 were determined and the influence of different OSAS and obesity related factors on cytokine secretion and expression of different adhesion molecules by THP-1 monocytes was analysed. Our data revealed a significant redistribution of circulating classical and intermediate monocytes in all three patient cohorts, but differential effects in terms of monocytic adhesion molecules CD11a, CD11b, CD11c, CX3CR1, CD29, CD49d, and plasma cytokine levels. These data were reflected by differential effects of OSAS and obesity related factors leptin, TNFα and hypoxia on THP-1 cytokine secretion patterns and expression of adhesion molecules CD11b and CD49d. In summary, our data revealed differential effects of OSAS and obesity, which underlines the need for a customized therapeutic regimen with respect to the individual weighting of these overlapping diseases.


Asunto(s)
Leptina , Apnea Obstructiva del Sueño , Humanos , Monocitos/metabolismo , Obesidad/metabolismo , Citocinas
8.
Immunohorizons ; 8(1): 19-28, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175171

RESUMEN

Obesity is characterized by excessive body fat accumulation and comorbidities such as diabetes mellitus, cardiovascular disease, and obstructive sleep apnea syndrome (OSAS). Both obesity and OSAS are associated with immune disturbance, alterations of systemic inflammatory mediators, and immune cell recruitment to metabolic tissues. Chemokine CXCL10 is an important regulator of proinflammatory immune responses and is significantly increased in patients with severe obesity. This research project aims to investigate the impact of CXCL10 on human monocytes in patients with obesity. We studied the distribution of the CD14/CD16 monocyte subsets as well as their CX3CR1 expression patterns in whole-blood measurements from 92 patients with obesity and/or OSAS with regard to plasma CXCL10 values and individual clinical parameters. Furthermore, cytokine secretion by THP-1 monocytes in response to CXCL10 was analyzed. Data revealed significantly elevated plasma CXCL10 in patients with obesity with an additive effect of OSAS. CXCL10 was found to drive monocytic secretion of macrophage migration inhibitory factor via receptor protein CX3CR1, which significantly correlated with the individual body mass index. Our data show, for the first time, to our knowledge, that CX3CR1 is involved in alternative CXCL10 signaling in human monocytes in obesity-related inflammation. Obesity is a multifactorial disease, and further investigations regarding the complex interplay between obesity-related inflammatory mediators and systemic immune balances will help to better understand and improve the individual situation of our patients.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Apnea Obstructiva del Sueño , Humanos , Quimiocina CXCL10 , Receptor 1 de Quimiocinas CX3C , Mediadores de Inflamación , Monocitos , Obesidad
9.
JHEP Rep ; 6(8): 101104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39035069

RESUMEN

Background & Aims: Data on the association between proton pump inhibitor (PPI) use and hepatic encephalopathy (HE) are conflicting, and data from multicentre studies are scarce. The aim of this study was to dissect the potential association between PPI use and minimal (MHE) and overt HE (OHE). Methods: Data from patients with cirrhosis recruited at seven centres across Europe and the US were analysed. MHE was defined by the psychometric hepatic encephalopathy score (PHES). PPI use was recorded on the day of testing with PHES. Patients were followed for OHE development and death/liver transplantation. Results: A total of 1,160 patients with a median MELD of 11 were included (Child-Pugh stages: A 49%/B 39%/C 11%). PPI use was noted in 58% of patients. Median follow-up time was 18.1 months, during which 230 (20%) developed an OHE episode, and 224 (19%) reached the composite endpoint of death/liver transplantation. In multivariable analyses, PPI use was neither associated with the presence of MHE at baseline nor OHE development during follow-up. These findings were consistent in subgroup analyses of patients with Child-Pugh A or B cirrhosis and after excluding patients with a history of OHE. PPI use was also not associated with a higher risk of OHE, neither in patients with an indication for treatment nor in patients without an indication. Conclusions: PPI use is not associated with a higher risk of HE in patients with cirrhosis. Based on these findings, at present, a prescription should not be prohibited in case of a generally accepted indication. Impact and implications: Data on the association between proton pump inhibitor (PPI) use and hepatic encephalopathy (HE) are conflicting. In this study, PPI use was not associated with a higher risk of minimal HE at baseline or overt HE during follow-up in patients with cirrhosis. Based on these findings, prescription of a PPI for a generally accepted indication should not be prohibited in patients with cirrhosis.

10.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701395

RESUMEN

BACKGROUND: Minimal hepatic encephalopathy, defined by the portosystemic hepatic encephalopathy score (PHES), is associated with a higher risk of subsequent OHE. It remains unclear if there is a stepwise increase in OHE risk with worse PHES results. METHODS: In this multicenter study, patients with minimal hepatic encephalopathy, as defined by abnormal PHES, were followed for OHE development. RESULTS: In all, 207 patients were included. There was no stepwise increase in OHE risk with worse PHES results. CONCLUSIONS: Abnormal PHES is associated with a higher OHE risk, but we found no stepwise increase in OHE risk with worse PHES results below the established cutoff.


Asunto(s)
Encefalopatía Hepática , Humanos , Masculino , Encefalopatía Hepática/etiología , Femenino , Persona de Mediana Edad , Anciano , Índice de Severidad de la Enfermedad , Factores de Riesgo , Medición de Riesgo , Adulto
11.
EBioMedicine ; 105: 105178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38889481

RESUMEN

BACKGROUND: The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS: To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS: Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION: We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING: Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Modelos Animales de Enfermedad , Neoplasias Hepáticas , Hidrolasas Diéster Fosfóricas , Animales , Ratones , Biomarcadores de Tumor/sangre , Hidrolasas Diéster Fosfóricas/sangre , Hidrolasas Diéster Fosfóricas/metabolismo , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , alfa-Fetoproteínas/metabolismo , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Oligopéptidos/administración & dosificación
12.
Front Med (Lausanne) ; 11: 1334865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895187

RESUMEN

Intoduction: Identification of specific metabolome and lipidome profile of patients with primary sclerosing cholangitis (PSC) is crucial for diagnosis, targeted personalized therapy, and more accurate risk stratification. Methods: Nuclear magnetic resonance (NMR) spectroscopy revealed an altered metabolome and lipidome of 33 patients with PSC [24 patients with inflammatory bowel disease (IBD) and 9 patients without IBD] compared with 40 age-, sex-, and body mass index (BMI)-matched healthy controls (HC) as well as 64 patients with IBD and other extraintestinal manifestations (EIM) but without PSC. Results: In particular, higher concentrations of pyruvic acid and several lipoprotein subfractions were measured in PSC in comparison to HC. Of clinical relevance, a specific amino acid and lipid profile was determined in PSC compared with IBD and other EIM. Discussion: These results have the potential to improve diagnosis by differentiating PSC patients from HC and those with IBD and EIM.

13.
Clin Transl Med ; 14(6): e1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877653

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. METHODS: We describe an integrated whole-exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. RESULTS: We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke-associated Asian iCCAs. CONCLUSIONS: By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease.


Asunto(s)
Colangiocarcinoma , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas , Humanos , Colangiocarcinoma/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Masculino , Proteínas Proto-Oncogénicas/genética , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Neoplasias de los Conductos Biliares/genética , Alemania/epidemiología , Biomarcadores de Tumor/genética , Adulto , Genómica/métodos , Proteínas Tirosina Quinasas
14.
Sci Adv ; 9(51): eadh1442, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134284

RESUMEN

Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.


Asunto(s)
Neoplasias Hepáticas , Mutaciones Letales Sintéticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Deleción Cromosómica , Aberraciones Cromosómicas , Cromosomas , Sistemas CRISPR-Cas
15.
Inflamm Bowel Dis ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156773

RESUMEN

BACKGROUND: Accurate biomarkers for disease activity and progression in patients with inflammatory bowel disease (IBD) are a prerequisite for individual disease characterization and personalized therapy. We show that metabolic profiling of serum from IBD patients is a promising approach to establish biomarkers. The aim of this work was to characterize metabolomic and lipidomic serum profiles of IBD patients in order to identify metabolic fingerprints unique to the disease. METHODS: Serum samples were obtained from 55 patients with Crohn's disease (CD), 34 patients with ulcerative colitis (UC), and 40 healthy control (HC) individuals and analyzed using proton nuclear magnetic resonance spectroscopy. Classification of patients and HC individuals was achieved by orthogonal partial least squares discriminant analysis and univariate analysis approaches. Disease activity was assessed using the Gastrointestinal Symptom Rating Scale. RESULTS: Serum metabolome significantly differed between CD patients, UC patients, and HC individuals. The metabolomic differences of UC and CD patients compared with HC individuals were more pronounced than the differences between UC and CD patients. Differences in serum levels of pyruvic acid, histidine, and the branched-chain amino acids leucine and valine were detected. The size of low-density lipoprotein particles shifted from large to small dense particles in patients with CD. Of note, apolipoprotein A1 and A2 serum levels were decreased in CD and UC patients with higher fecal calprotectin levels. The Gastrointestinal Symptom Rating Scale is negatively associated with the concentration of apolipoprotein A2. CONCLUSIONS: Metabolomic assessment of serum samples facilitated the differentiation of IBD patients and HC individuals. These differences were constituted by changes in amino acid and lipoprotein levels. Furthermore, disease activity in IBD patients was associated with decreased levels of the atheroprotective apolipoproteins A1 and A2.


The metabolic and lipidomic serum profile of patients with inflammatory bowel disease was analyzed using proton nuclear magnetic resonance spectroscopy. A significantly altered profile in comparison with healthy control individuals was identified, characterized by more atherogenic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA