Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 194(8): 1511-1527, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38705383

RESUMEN

The phosphatidylinositol-4,5-bisphosphate 3-kinase delta isoform (Pik3cd), usually considered immune-specific, was unexpectedly identified as a gene potentially related to either regeneration and/or differentiation in animals lacking hepatocellular Integrin Linked Kinase (ILK). Since a specific inhibitor (Idelalisib, or CAL101) for the catalytic subunit encoded by Pik3cd (p110δ) has reported hepatotoxicity when used for treating chronic lymphocytic leukemia and other lymphomas, the authors aimed to elucidate whether there is a role for p110δ in normal liver function. To determine the effect on normal liver regeneration, partial hepatectomy (PHx) was performed using mice in which p110δ was first inhibited using CAL101. Inhibition led to over a 50% decrease in proliferating hepatocytes in the first 2 days after PHx. This difference correlated with phosphorylation changes in the HGF and EGF receptors (MET and EGFR, respectively) and NF-κB signaling. Ingenuity Pathway Analyses implicated C/EBPß, HGF, and the EGFR heterodimeric partner, ERBB2, as three of the top 20 regulators downstream of p110δ signaling because their pathways were suppressed in the presence of CAL101 at 1 day post-PHx. A regulatory role for p110δ signaling in mouse and rat hepatocytes through MET and EGFR was further verified using hepatocyte primary cultures, in the presence or absence of CAL101. Combined, these data support a role for p110δ as a downstream regulator of normal hepatocytes when stimulated to proliferate.


Asunto(s)
Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Hepatocitos , Regeneración Hepática , Animales , Ratones , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Hepatocitos/metabolismo , Regeneración Hepática/fisiología , Ratas , Hepatectomía , Receptores ErbB/metabolismo , Transducción de Señal , Masculino , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-met/metabolismo , FN-kappa B/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo
2.
Am J Pathol ; 192(6): 887-903, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35390317

RESUMEN

Activation of constitutive androstane receptor (CAR) transcription factor by xenobiotics promotes hepatocellular proliferation, promotes hypertrophy without liver injury, and induces drug metabolism genes. Previous work demonstrated that lymphocyte-specific protein-1 (LSP1), an F-actin binding protein and gene involved in human hepatocellular carcinoma, suppresses hepatocellular proliferation after partial hepatectomy. The current study investigated the role of LSP1 in liver enlargement induced by chemical mitogens, a regenerative process independent of tissue loss. 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a direct CAR ligand and strong chemical mitogen, was administered to global Lsp1 knockout and hepatocyte-specific Lsp1 transgenic (TG) mice and measured cell proliferation, hypertrophy, and expression of CAR-dependent drug metabolism genes. TG livers displayed a significant decrease in Ki-67 labeling and liver/body weight ratios compared with wild type on day 2. Surprisingly, this was reversed by day 5, due to hepatocyte hypertrophy. There was no difference in CAR-regulated drug metabolism genes between wild type and TG. TG livers displayed increased Yes-associated protein (YAP) phosphorylation, decreased nuclear YAP, and direct interaction between LSP1 and YAP, suggesting LSP1 suppresses TCPOBOP-driven hepatocellular proliferation, but not hepatocyte volume, through YAP. Conversely, loss of LSP1 led to increased hepatocellular proliferation on days 2, 5, and 7. LSP1 selectively suppresses CAR-induced hepatocellular proliferation, but not drug metabolism, through the interaction of LSP1 with YAP, supporting the role of LSP1 as a selective growth suppressor.


Asunto(s)
Neoplasias Hepáticas , Xenobióticos , Animales , Proliferación Celular , Receptor de Androstano Constitutivo , Hepatocitos/metabolismo , Hipertrofia/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología , Linfocitos , Ratones , Proteínas de Microfilamentos , Xenobióticos/metabolismo , Xenobióticos/farmacología , Proteínas Señalizadoras YAP
3.
Hepatology ; 73(5): 2005-2022, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32794202

RESUMEN

BACKGROUND AND AIMS: Constitutive androstane receptor (CAR) agonists, such as 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), are known to cause robust hepatocyte proliferation and hepatomegaly in mice along with induction of drug metabolism genes without any associated liver injury. Yes-associated protein (Yap) is a key transcription regulator that tightly controls organ size, including that of liver. Our and other previous studies suggested increased nuclear localization and activation of Yap after TCPOBOP treatment in mice and the potential role of Yap in CAR-driven proliferative response. Here, we investigated a direct role of Yap in CAR-driven hepatomegaly and hepatocyte proliferation using hepatocyte-specific Yap-knockout (KO) mice. APPROACH AND RESULTS: Adeno-associated virus 8-thyroxine binding globulin promoter-Cre recombinase vector was injected to Yap-floxed mice for achieving hepatocyte-specific Yap deletion followed by TCPOBOP treatment. Yap deletion did not decrease protein expression of CAR or CAR-driven induction of drug metabolism genes (including cytochrome P450 [Cyp] 2b10, Cyp2c55, and UDP-glucuronosyltransferase 1a1 [Ugt1a1]). However, Yap deletion substantially reduced TCPOBOP-induced hepatocyte proliferation. TCPOBOP-driven cell cycle activation was disrupted in Yap-KO mice because of delayed (and decreased) induction of cyclin D1 and higher expression of p21, resulting in decreased phosphorylation of retinoblastoma protein. Furthermore, the induction of other cyclins, which are sequentially involved in progression through cell cycle (including cyclin E1, A2, and B1), and important mitotic regulators (such as Aurora B kinase and polo-like kinase 1) was remarkably reduced in Yap-KO mice. Microarray analysis revealed that 26% of TCPOBOP-responsive genes that were mainly related to proliferation, but not to drug metabolism, were altered by Yap deletion. Yap regulated these proliferation genes through alerting expression of Myc and forkhead box protein M1, two critical transcriptional regulators of CAR-mediated hepatocyte proliferation. CONCLUSIONS: Our study revealed an important role of Yap signaling in CAR-driven hepatocyte proliferation; however, CAR-driven induction of drug metabolism genes was independent of Yap.


Asunto(s)
Proliferación Celular/fisiología , Receptor de Androstano Constitutivo/fisiología , Hepatocitos/fisiología , Inactivación Metabólica/genética , Proteínas Señalizadoras YAP/fisiología , Animales , Ciclo Celular , Femenino , Regulación de la Expresión Génica , Genes/genética , Hepatocitos/metabolismo , Humanos , Inactivación Metabólica/fisiología , Regeneración Hepática , Ratones Noqueados , Transcriptoma
4.
Am J Pathol ; 190(7): 1427-1437, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289287

RESUMEN

The activation of CD81 [the portal of entry of hepatitis C virus (HCV)] by agonistic antibody results in phosphorylation of Ezrin via Syk kinase and is associated with inactivation of the Hippo pathway and increase in yes-associated protein (Yap1). The opposite occurs when glypican-3 or E2 protein of HCV binds to CD81. Hepatocyte-specific glypican-3 transgenic mice have decreased levels of phosphorylated (p)-Ezrin (Thr567) and Yap, increased Hippo activity, and suppressed liver regeneration. The role of Ezrin in these processes has been speculated, but not proved. We show that Ezrin has a direct role in the regulation of Hippo pathway and Yap. Forced expression of plasmids expressing mutant Ezrin (T567D) that mimics p-Ezrin (Thr567) suppressed Hippo activity and activated Yap signaling in hepatocytes in vivo and enhanced activation of pathways of ß-catenin and leucine rich repeat containing G protein-coupled receptor 4 (LGR4) and LGR5 receptors. Hepatoma cell lines JM1 and JM2 have decreased CD81 expression and Hippo activity and up-regulated p-Ezrin (T567). NSC668394, a p-Ezrin (Thr567) antagonist, significantly decreased hepatoma cell proliferation. We additionally show that p-Ezrin (T567) is controlled by epidermal growth factor receptor and MET. Ezrin phosphorylation, mediated by CD81-associated Syk kinase, is directly involved in regulation of Hippo pathway, Yap levels, and growth of normal and neoplastic hepatocytes. The finding has mechanistic and potentially therapeutic applications in hepatocyte growth biology, hepatocellular carcinoma, and HCV pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Hepatocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Humanos , Ratones , Fosforilación
5.
Am J Pathol ; 189(7): 1413-1422, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31054988

RESUMEN

Obesity is a major risk factor for type 2 diabetes because of chronic hepatic inflammation and resultant insulin resistance. Hepatocyte growth factor (HGF) is responsible for resetting hepatic homeostasis after injury following activation by urokinase-type plasminogen activator (u-PA; encoded by the PLAU gene). Plasminogen activator inhibitor type-1 (PAI-1; encoded by the SERPINE1 gene), a u-PA inhibitor and antifibrinolytic agent, is often elevated in obesity and is linked to cardiovascular events. We hypothesized that, in addition to its role in preventing fibrinolysis, elevated PAI-1 inhibits HGF's activation by u-PA and the resultant anti-inflammatory and hepatoprotective properties. Wild-type and PAI-1 knockout (KO) mice on a high-fat diet both became significantly heavier than lean controls; however, the obese KO mice demonstrated improved glucose metabolism compared with wild-type mice. Obese KO mice also exhibited an increase in conversion of latent single-chain HGF to active two-chain HGF, coinciding with an increase in the phosphorylation of the HGF receptor (HGFR or MET, encoded by the MET gene), as well as dampened inflammation. These results strongly suggest that, in addition to its other functions, PAI-mediated inhibition of HGF activation prohibits the resolution of inflammation in the context of obesity-induced type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/patología , Inhibidor 1 de Activador Plasminogénico/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
6.
Hepatology ; 69(4): 1702-1718, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29888801

RESUMEN

TCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and epidermal growth factor receptor (EGFR), are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved using MET knockout (KO) mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFR inhibitor (EGFRi)], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP-induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in hepatocyte nuclear factor 4 alpha expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed the vast majority (~40%) of TCPOBOP-dependent genes primarily related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.


Asunto(s)
Receptores ErbB/metabolismo , Hepatomegalia/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Receptor de Androstano Constitutivo , Femenino , Proteína Forkhead Box M1/metabolismo , Perfilación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/fisiología , Hepatomegalia/inducido químicamente , Vía de Señalización Hippo , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas , Receptores Citoplasmáticos y Nucleares/agonistas , Transducción de Señal
7.
Hepatology ; 70(5): 1546-1563, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31063640

RESUMEN

Epidermal growth factor receptor (EGFR) is a critical regulator of hepatocyte proliferation and liver regeneration. Our recent work indicated that EGFR can also regulate lipid metabolism during liver regeneration after partial hepatectomy. Based on these findings, we investigated the role of EGFR in a mouse model of nonalcoholic fatty liver disease (NAFLD) using a pharmacological inhibition strategy. C57BL6/J mice were fed a chow diet or a fast-food diet (FFD) with or without EGFR inhibitor (canertinib) for 2 months. EGFR inhibition completely prevented development of steatosis and liver injury in this model. In order to study if EGFR inhibition can reverse NAFLD progression, mice were fed the FFD for 5 months, with or without canertinib treatment for the last 5 weeks of the study. EGFR inhibition remarkably decreased steatosis, liver injury, and fibrosis and improved glucose tolerance. Microarray analysis revealed that ~40% of genes altered by the FFD were differentially expressed after EGFR inhibition and, thus, are potentially regulated by EGFR. Several genes and enzymes related to lipid metabolism (particularly fatty acid synthesis and lipolysis), which were disrupted by the FFD, were found to be modulated by EGFR. Several crucial transcription factors that play a central role in regulating these lipid metabolism genes during NAFLD, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBF1), carbohydrate-responsive element-binding protein, and hepatocyte nuclear factor 4 alpha, were also found to be modulated by EGFR. In fact, chromatin immunoprecipitation analysis revealed that PPARγ binding to several crucial lipid metabolism genes (fatty acid synthase, stearoyl-coenzyme A desaturase 1, and perilipin 2) was drastically reduced by EGFR inhibition. Further upstream, EGFR inhibition suppressed AKT signaling, which is known to control these transcription factors, including PPARγ and SREBF1, in NAFLD models. Lastly, the effect of EGFR in FFD-induced fatty-liver phenotype was not shared by receptor tyrosine kinase MET, investigated using MET knockout mice. Conclusion: Our study revealed a role of EGFR in NAFLD and the potential of EGFR inhibition as a treatment strategy for NAFLD.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Comida Rápida , Morfolinas/farmacología , Morfolinas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Am J Pathol ; 188(6): 1469-1477, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577937

RESUMEN

Glypican (GPC)-3 is overexpressed in hepatocellular carcinomas (HCCs). GPC3 binds to CD81. Forced expression of CD81 in a GPC3-expressing HCC cell line caused activation of Hippo, a decrease in ezrin phosphorylation, and a decrease in yes-associated protein (YAP). CD81 is also associated with hepatitis C virus (HCV) entry into hepatocytes. Activation of CD81 by agonistic antibody causes activation of tyrosine-protein kinase SYK (SYK) and phosphorylation of ezrin, a regulator of the Hippo pathway. In cultures of normal hepatocytes, CD81 agonistic antibody led to enhanced phosphorylation of ezrin and an increase in nuclear YAP. HCV E2 protein mimicked GPC3 and led to enhanced Hippo activity and decreased YAP in cultured normal human hepatocytes. HCC tissue microarray revealed a lack of expression of CD81 in most HCCs, rendering them insusceptible to HCV infection. Activation of CD81 by agonistic antibody suppressed the Hippo pathway and increased nuclear YAP. HCV mimicked GPC3, causing Hippo activation and a decrease in YAP. HCV is thus likely to enhance hepatic neoplasia by acting as a promoter of growth of early CD81-negative neoplastic hepatocytes, which are resistant to HCV infection, and thus have a proliferative advantage to clonally expand as they participate in compensatory regeneration for the required maintenance of 100% of liver weight (hepatostat).


Asunto(s)
Biomimética , Carcinoma Hepatocelular/patología , Glipicanos/metabolismo , Hepatitis C/complicaciones , Hepatocitos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Tetraspanina 28/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proliferación Celular , Glipicanos/genética , Hepacivirus , Hepatitis C/virología , Hepatocitos/metabolismo , Vía de Señalización Hippo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Tetraspanina 28/genética , Células Tumorales Cultivadas
9.
Am J Pathol ; 188(10): 2223-2235, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30031724

RESUMEN

MET and epidermal growth factor receptor (EGFR) tyrosine kinases are crucial for liver regeneration and normal hepatocyte function. Recently, we demonstrated that in mice, combined inhibition of these two signaling pathways abolished liver regeneration after hepatectomy, with subsequent hepatic failure and death at 15 to 18 days after resection. Morbidity was associated with distinct and specific alterations in important downstream signaling pathways that led to decreased hepatocyte volume, reduced proliferation, and shutdown of many essential hepatocyte functions, such as fatty acid synthesis, urea cycle, and mitochondrial functions. Herein, we explore the role of MET and EGFR signaling in resting mouse livers that are not subjected to hepatectomy. Mice with combined disruption of MET and EGFR signaling were noticeably sick by 10 days and died at 12 to 14 days. Mice with combined disruption of MET and EGFR signaling mice showed decreased liver/body weight ratios, increased apoptosis in nonparenchymal cells, impaired liver metabolic functions, and activation of distinct downstream signaling pathways related to inflammation, cell death, and survival. The present study demonstrates that, in addition to controlling the regenerative response, MET and EGFR synergistically control baseline liver homeostasis in normal mice in such a way that their combined disruption leads to liver failure and death.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Fallo Hepático/etiología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Proliferación Celular/fisiología , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Hepatocitos/fisiología , Fallo Hepático/mortalidad , Regeneración Hepática/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones Transgénicos , Morfolinas/farmacología , Tamaño de los Órganos/fisiología , Inhibidores de Proteínas Quinasas/farmacología
10.
Hepatology ; 64(5): 1711-1724, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27397846

RESUMEN

Receptor tyrosine kinases MET and epidermal growth factor receptor (EGFR) are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also participate in the early part of the process. Regeneration employs effective redundancy schemes to compensate for the missing signals. Elimination of any single extracellular signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling (MET knockout + EGFR-inhibited mice) abolishes liver regeneration, prevents restoration of liver mass, and leads to liver decompensation. MET knockout or simply EGFR-inhibited mice had distinct and signaling-specific alterations in Ser/Thr phosphorylation of mammalian target of rapamycin, AKT, extracellular signal-regulated kinases 1/2, phosphatase and tensin homolog, adenosine monophosphate-activated protein kinase α, etc. In the combined MET and EGFR signaling elimination of MET knockout + EGFR-inhibited mice, however, alterations dependent on either MET or EGFR combined to create shutdown of many programs vital to hepatocytes. These included decrease in expression of enzymes related to fatty acid metabolism, urea cycle, cell replication, and mitochondrial functions and increase in expression of glycolysis enzymes. There was, however, increased expression of genes of plasma proteins. Hepatocyte average volume decreased to 35% of control, with a proportional decrease in the dimensions of the hepatic lobules. Mice died at 15-18 days after hepatectomy with ascites, increased plasma ammonia, and very small livers. CONCLUSION: MET and EGFR separately control many nonoverlapping signaling endpoints, allowing for compensation when only one of the signals is blocked, though the combined elimination of the signals is not tolerated; the results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation. (Hepatology 2016;64:1711-1724).


Asunto(s)
Receptores ErbB/fisiología , Fallo Hepático/etiología , Regeneración Hepática/fisiología , Proteínas Proto-Oncogénicas c-met/fisiología , Animales , Masculino , Ratones , Transducción de Señal
11.
Lab Invest ; 95(10): 1117-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26237273

RESUMEN

Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis.


Asunto(s)
Fibrinolíticos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/agonistas , Miofibroblastos/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Activador de Tejido Plasminógeno/farmacología , Animales , Tetracloruro de Carbono/antagonistas & inhibidores , Tetracloruro de Carbono/toxicidad , Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Intoxicación por Tetracloruro de Carbono/metabolismo , Intoxicación por Tetracloruro de Carbono/patología , Línea Celular Transformada , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Fibrinolíticos/metabolismo , Fibrinolíticos/uso terapéutico , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miofibroblastos/citología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fosforilación/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Solventes/química , Solventes/toxicidad , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/uso terapéutico
12.
Am J Pathol ; 184(10): 2757-67, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25131752

RESUMEN

Macrophage accumulation is one of the hallmarks of progressive kidney disease. Tissue-type plasminogen activator (tPA) is known to promote macrophage infiltration and renal inflammation during chronic kidney injury. However, the underlying mechanism remains largely unknown. We examined the role of tPA in macrophage motility in vivo by tracking fluorescence-labeled bone marrow-derived macrophages, and found that tPA-deficient mice had markedly fewer infiltrating fluorescence-labeled macrophages than the wild-type (WT) mice. Experiments in bone marrow chimeric mice further demonstrated that myeloid cells are the main source of endogenous tPA that promotes macrophage migration. In vitro studies showed that tPA promoted macrophage motility through its CD11b-mediated protease-independent function; and focal adhesion kinase (FAK), Rac-1, and NF-κB were indispensable to tPA-induced macrophage migration as either infection of FAK dominant-negative adenovirus or treatment with a Rac-1-specific inhibitor or NF-κB inhibitor abolished the effect of tPA. Moreover, ectopic FAK mimicked tPA and induced macrophage motility. tPA also activated migratory signaling in vivo. The accumulation of phospho-FAK-positive CD11b macrophages in the obstructed kidneys from WT mice was clearly attenuated in tPA knockout mice, which also displayed lower Rac-1 activity than their WT counterparts. Therefore, our results indicate that myeloid-derived tPA promotes macrophage migration through a novel signaling cascade involving FAK, Rac-1, and NF-κB.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Macrófagos/fisiología , FN-kappa B/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal , Activador de Tejido Plasminógeno/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Quimera , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo
13.
Cell Mol Gastroenterol Hepatol ; 18(4): 101380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038606

RESUMEN

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model. METHODS: EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months. RESULTS: Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-ß/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR. CONCLUSIONS: Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.


Asunto(s)
Receptores ErbB , Hepatocitos , Cirrosis Hepática , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Receptores ErbB/genética , Hígado Graso/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Eliminación de Gen , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/etiología , Ratones Noqueados , Transducción de Señal
14.
Hepatology ; 54(2): 620-30, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21574168

RESUMEN

UNLABELLED: Glypican 3 (GPC3) is a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. Loss-of-function mutations of GPC3 cause Simpson-Golabi-Behmel syndrome characterized by overgrowth of multiple organs, including liver. Our previous study showed that in GPC3 transgenic (TG) mice, hepatocyte-targeted overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration after partial hepatectomy and alters gene expression profiles and potential cell cycle-related proteins. This study investigates the role of GPC3 in hepatocyte proliferation and hepatomegaly induced by the xenobiotic mitogens phenobarbital (PB) and TCPOBOP (1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene). Wildtype (WT) and GPC3 TG mice were given 0.1% PB in drinking water for 10 days or a single dose of TCPOBOP (3 mg/kg) by oral gavage. At day 5 the WT mice showed a 2.2- and 3.0-fold increase in liver weight, whereas the GPC3 TG mice showed a 1.3- and 1.6-fold increase in liver weight after PB and TCPOBOP administration, respectively. There was a significant suppression of proliferative response in the GPC3 TG mice, as assessed by percent of Ki67-positive hepatocyte nuclei. Moreover, gene array analysis showed a panel of changes in the gene expression profile of TG mice, both before and after administration of the xenobiotic mitogens. Expression of cell cycle-related genes in the TG mice was also decreased compared to the WT mice. CONCLUSION: Our results indicate that in GPC3 TG mice, hepatocyte-targeted overexpression of GPC3 plays an important role for regulation of liver size and termination of hepatocyte proliferation induced by the xenobiotic mitogens PB and TCPOBOP, comparable to the effects seen in the GPC3 TG mice during liver regeneration after partial hepatectomy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glipicanos/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Hepatomegalia/genética , Fenobarbital/farmacología , Piridinas/farmacología , Animales , Regulación de la Expresión Génica , Genes cdc , Hepatomegalia/inducido químicamente , Ratones , Ratones Transgénicos
15.
Hepatology ; 53(2): 587-95, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21274879

RESUMEN

UNLABELLED: TCBOPOP (1,4-bis [2-(3,5-dichaloropyridyloxy)] benzene) an agonist of the constitutive androstane receptor (CAR), produces rapid hepatocyte hyperplasia and hepatomegaly in the absence of hepatic injury. In this study we demonstrate that integrin-linked kinase (ILK), which is involved in transmission of the extracellular matrix (ECM) signaling by way of integrin receptors, plays an important role in regulating TCPOBOP-induced proliferation of hepatocytes and hepatomegaly. Hepatocyte-specific ILK knockout mice (ILK/liver-/- mice) and wildtype mice (WT) were given a single dose of TCPOBOP (3 mg/kg) by oral gavage. Mice were sacrificed at days 1, 2, 5, and 7 after TCPOBOP administration. WT mice showed maximum proliferation on days 1 and 2, which came back to baseline levels by days 5 and 7 after TCPOBOP administration. The ILK/liver-/- mice, on the other hand, showed a prolonged and a sustained proliferative response as evident by an increased number of proliferative cell nuclear antigen assay (PCNA)-positive cells even at days 5 and 7 after TCPOBOP administration. At day 7 the WT mice showed close to a 2.5-fold increase in liver weight, whereas the ILK/liver-/- mice showed a 3.7-fold increase in liver weight. The prolonged proliferative response in the ILK/liver-/- mice seems to be due to sustained induction of CAR leading to sustained induction of c-Myc, which is known to be a key mediator of TCPOPOP-CAR induced direct liver hyperplasia. CONCLUSION: The data indicate that ECM-mediated signaling by way of ILK is essential for adjustment of final liver size and proper termination of TCPOBOP-induced proliferation of hepatocytes.


Asunto(s)
Hepatocitos/metabolismo , Hepatocitos/patología , Hepatomegalia/inducido químicamente , Hepatomegalia/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/efectos adversos , Animales , Peso Corporal/fisiología , Ciclo Celular/fisiología , Proliferación Celular , Modelos Animales de Enfermedad , Matriz Extracelular/fisiología , Hepatomegalia/metabolismo , Ratones , Ratones Noqueados , Tamaño de los Órganos/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/fisiología
16.
Am J Pathol ; 177(3): 1164-75, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20639453

RESUMEN

Proliferation and expansion of interstitial fibroblasts are predominant features of progressive chronic kidney diseases. However, how interstitial fibroblast proliferation is controlled remains ambiguous. Here we show that tissue-type plasminogen activator (tPA) is a potent mitogen that promotes interstitial fibroblast proliferation through a cascade of signaling events. In vitro, tPA promoted cell proliferation of rat kidney fibroblasts (NRK-49F), as assessed by cell counting, cell proliferation assay, and bromodeoxyuridine labeling. tPA also accelerated NRK-49F cell cycle progression. Fibroblast proliferation induced by tPA was associated with an increased expression of numerous proliferation-related genes, including c-fos, c-myc, proliferating cell nuclear antigen, and cyclin D1. The mitogenic effect of tPA was independent of its protease activity, but required LDL receptor-related protein 1. Interestingly, inhibition of beta1 integrin signaling prevented tPA-mediated fibroblast proliferation. tPA rapidly induced tyrosine phosphorylation of focal adhesion kinase (FAK), which led to activation of its downstream mitogen-activated protein kinase signaling. Blockade of FAK, but not integrin-linked kinase, abolished the tPA-triggered extracellular signal-regulated protein kinase 1/2 activation, proliferation-related gene induction, and fibroblast proliferation. In vivo, proliferation of interstitial myofibroblasts in tPA null mice was attenuated after obstructive injury, compared with the wild-type controls. These studies illustrate that tPA is a potent mitogen that promotes renal interstitial fibroblast proliferation through LDL receptor-related protein 1-mediated beta1 integrin and FAK signaling.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrina beta1/metabolismo , Riñón/efectos de los fármacos , Activador de Tejido Plasminógeno/farmacología , Animales , Western Blotting , Recuento de Células , Ciclo Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Inmunohistoquímica , Riñón/citología , Riñón/metabolismo , Ratones , Ratones Noqueados , ARN Interferente Pequeño , Ratas , Transducción de Señal/efectos de los fármacos , Activador de Tejido Plasminógeno/metabolismo
17.
Am J Pathol ; 177(4): 1687-96, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20724593

RESUMEN

In renal fibrosis, interstitial fibroblasts have an increased proliferative phenotype, and the numbers of interstitial fibroblasts closely correlate with the extent of kidney damage. The mechanisms underlying proliferation and resulting expansion of the interstitium remain largely unknown. Here we define the intracellular signaling events by which tissue plasminogen activator (tPA) promotes renal interstitial fibroblast proliferation. tPA promoted the proliferation of renal interstitial fibroblasts independent of its protease activity. The mitogenic effect of tPA required Tyr(4507) phosphorylation of the cytoplasmic tail of its receptor LDL receptor-related protein 1. tPA triggered sequential proliferative signaling events involving Erk1/2, p90RSK, GSK3ß phosphorylation, and cyclin D1 induction. Blockade of Erk1/2 activation or knockdown of p90RSK suppressed tPA-induced GSK3ß phosphorylation, cyclin D1 expression, and fibroblast proliferation. In contrast, expression of constitutively active Mek1 mimicked tPA in inducing GSK3ß phosphorylation and cyclin D1 expression. Ectopic overexpression of an uninhibitable GSK3ß mutant eliminated tPA-induced cyclin D1 expression. In the murine obstruction model, tPA deficiency reduced renal GSK3ß phosphorylation and induction of PCNA and FSP-1. These findings show that tPA induces Tyr(4507) phosphorylation of LDL receptor-related protein 1, which in turn leads to the downstream phosphorylation of Erk1/2, p90RSK, and GSK3ß, followed by the induction of cyclin D1 in murine interstitial fibroblasts. This study implicates tPA as a mitogen that promotes interstitial fibroblast proliferation, leading to expansion of these cells.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Mitosis , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Activador de Tejido Plasminógeno/farmacología , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Ciclina D1/metabolismo , Embrión de Mamíferos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Técnicas para Inmunoenzimas , Inmunoprecipitación , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Fosforilación , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina/metabolismo
18.
Hepatology ; 52(3): 1060-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20812357

RESUMEN

UNLABELLED: Glypican 3 (GPC3) belongs to a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. GPC3 is overexpressed in hepatocellular carcinoma. Loss-of-function mutations of GPC3 result in Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by overgrowth of multiple organs, including the liver. Our previous study showed that GPC3 plays a negative regulatory role in hepatocyte proliferation, and this effect may involve CD81, a cell membrane tetraspanin. To further investigate GPC3 in vivo, we engineered transgenic (TG) mice overexpressing GPC3 in the liver under the control of the albumin promoter. GPC3 TG mice with hepatocyte-targeted, overexpressed GPC3 developed normally in comparison with their nontransgenic littermates but had a suppressed rate of hepatocyte proliferation and liver regeneration after partial hepatectomy. Moreover, gene array analysis revealed a series of changes in the gene expression profiles in TG mice (both in normal mice and during liver regeneration). In unoperated GPC3 TG mice, there was overexpression of runt related transcription factor 3 (7.6-fold), CCAAT/enhancer binding protein alpha (2.5-fold), GABA A receptor (2.9-fold), and wingless-related MMTV integration site 7B (2.8-fold). There was down-regulation of insulin-like growth factor binding protein 1 (8.4-fold), Rab2 (5.6-fold), beta-catenin (1.7-fold), transforming growth factor beta type I (3.1-fold), nodal (1.8-fold), and yes-associated protein (1.4-fold). Changes after hepatectomy included decreased expression in several cell cycle-related genes. CONCLUSION: Our results indicate that in GPC3 TG mice, hepatocyte overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration and alters gene expression profiles, and potential cell cycle-related proteins and multiple other pathways are involved and affected.


Asunto(s)
Proliferación Celular , Glipicanos/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Regeneración Hepática/fisiología , Hígado/metabolismo , Animales , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perfilación de la Expresión Génica , Glipicanos/genética , Hepatectomía , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Receptores de GABA-A/metabolismo , Receptores Virales/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo , Proteína de Unión al GTP rab2/metabolismo
19.
Comp Hepatol ; 10: 11, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22104495

RESUMEN

BACKGROUND: Programmed cell death or apoptosis is an essential process for tissue homeostasis. Hepatocyte apoptosis is a common mechanism to many forms of liver disease. This study was undertaken to test the role of ILK in hepatocyte survival and response to injury using a Jo-2-induced apoptosis model. METHODS: For survival experiments, ILK KO and WT mice received a single intraperitoneal injection of the agonistic anti-Fas monoclonal antibody Jo-2 at the lethal dose (0.4 µg/g body weight) or sublethal dose (0.16 µg/g body weight). For further mechanistic studies sublethal dose of Fas monoclonal antibody was chosen. RESULTS: There was 100% mortality in the WT mice as compared to 50% in the KO mice. We also found that hepatocyte specific ILK KO mice (integrin linked kinase) died much later than WT mice after challenge with a lethal dose of Fas agonist Jo-2. At sublethal dose of Jo-2, there was 20% mortality in KO mice with minimal apoptosis whereas WT mice developed extensive apoptosis and liver injury leading to 70% mortality due to liver failure at 12 h. Proteins known to be associated with cell survival/death were differentially expressed in the 2 groups. In ILK KO mice there was downregulation of proapoptotic genes and upregulation of antiapoptotic genes. CONCLUSIONS: Mechanistic insights revealed that pro-survival pathways such as Akt, ERK1/2, and NFkB signaling were upregulated in the ILK KO mice. Inhibition of only NFkB and ERK1/2 signaling led to an increase in the susceptibility of ILK KO hepatocytes to Jo-2-induced apoptosis. These studies suggest that ILK elimination from hepatocytes protects against Jo-2 induced apoptosis by upregulating survival pathways. FAK decrease may also play a role in this process. The results presented show that the signaling effects of ILK related to these functions are mediated in part mediated through NFkB and ERK1/2 signaling.

20.
Gene Expr ; 20(3): 201-207, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33482930

RESUMEN

Integrin linked kinase (ILK) is a vital signaling protein ubiquitously expressed throughout the body. It binds to intracellular integrins to help promote signaling related to cell adhesion, apoptosis, proliferation, migration, and a plethora of other common cellular functions. In this review, ILKs role in the liver is detailed. Studies have shown ILK to be a major participant in hepatic ECM organization, liver regeneration, insulin resistance, and hepatocellular carcinoma.


Asunto(s)
Hepatopatías/metabolismo , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Humanos , Hígado/patología , Hepatopatías/patología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA