Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Pharm ; 19(5): 1619-1634, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35436118

RESUMEN

Drug binding to human serum albumin (HSA) significantly affects in vivo drug transport and biological activity. To gain insight into the binding mechanism of the two B-Raf tyrosine kinase inhibitors dabrafenib and vemurafenib to HSA, in this work, we adopted a combined strategy based on fluorescence spectroscopy, isothermal titration calorimetry (ITC), circular dichroism (CD), and molecular simulations. Both anticancer drugs are found to bind spontaneously and with a 1:1 stoichiometry within the same binding pocket, located in Sudlow's site II (subdomain IIIA) of the protein with comparable affinity and without substantially perturbing the protein secondary structure. However, the nature of each drug-protein interactions is distinct: whereas the formation of the dabrafenib/HSA complex is more entropically driven, the formation of the alternative vemurafenib/HSA assembly is prevalently enthalpic in nature. Kinetic analysis also indicates that the association rate is similar for the two drugs, whereas the residence time of vemurafenib within the HSA binding pocket is somewhat higher than that determined for the alternative B-Raf inhibitor.


Asunto(s)
Inhibidores de Proteínas Quinasas , Albúmina Sérica Humana , Sitios de Unión , Dicroismo Circular , Humanos , Imidazoles , Cinética , Simulación del Acoplamiento Molecular , Oximas , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Termodinámica , Vemurafenib
2.
Inorg Chem ; 61(28): 10781-10791, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35785790

RESUMEN

Gold nanoparticles (AuNPs) have found applications in biomedicine as diagnostic tools, but extensive research efforts have been also directed toward their development as more efficient drug delivery agents. The high specific surface area of AuNPs may provide dense loading of molecules like catechols (L-DOPA and dopamine) on nanosurfaces, enabling functionalization strategies for advancing conventional therapy and diagnostic approaches of neurodegenerative diseases. Despite numerous well-described procedures in the literature for preparation of different AuNPs, possible transformation and structural changes of surface functionalization agents have not been considered thoroughly. As a case in point, the catechols L-DOPA and dopamine were selected because of their susceptibility to oxidation, cyclization, and polymerization. To assess the fate of coating and functionalization agents during the preparation of AuNPs or interaction at the nano-bio interface, a combination of spectroscopy, light scattering, and microscopy techniques was used while structural information and reaction mechanism were obtained by NMR in combination with computational tools. The results revealed that the final form of catechol on the AuNP nanosurface depends on the molar ratio of Au used for AuNP preparation. A large molar excess of L-DOPA or dopamine is needed to prepare AuNPs funtionalized with fully reduced catechols. In the case of molar excess of Au, the oxidation of catechols to dopamine quinone and dopaquinone was promoted, and dopaquinone underwent intramolecular cyclization in which additional oxidation products, leukodopachrome, dopachrome, or its tautomer, were formed because of the larger intrinsic acidity of the more nucleophilic amino group in dopaquinone. MD simulations showed that, of the oxidation products, dopachrome had the highest affinity for binding to the AuNPs surface. The results highlight how a more versatile methodological approach, combining experimental and in silico techniques, allows more reliable characterization of binding events at the surface of AuNPs for possible applications in biomedicine.


Asunto(s)
Oro , Nanopartículas del Metal , Catecoles/química , Dopamina , Oro/química , Levodopa , Nanopartículas del Metal/química
3.
Proc Natl Acad Sci U S A ; 115(45): 11454-11459, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348798

RESUMEN

Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the "enhanced permeation and retention" (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity. Here, we report an original nanosystem for positron emission tomography (PET) imaging based on an amphiphilic dendrimer, which bears multiple PET reporting units at the terminals. This dendrimer is able to self-assemble into small and uniform nanomicelles, which accumulate in tumors for effective PET imaging. Benefiting from the combined dendrimeric multivalence and EPR-mediated passive tumor targeting, this nanosystem demonstrates superior imaging sensitivity and specificity, with up to 14-fold increased PET signal ratios compared with the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). Most importantly, this dendrimer system can detect imaging-refractory low-glucose-uptake tumors that are otherwise undetectable using [18F]FDG. In addition, it is endowed with an excellent safety profile and favorable pharmacokinetics for PET imaging. Consequently, this dendrimer nanosystem constitutes an effective and promising approach for cancer imaging. Our study also demonstrates that nanotechnology based on self-assembling dendrimers provides a fresh perspective for biomedical imaging and cancer diagnosis.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Complejos de Coordinación/farmacocinética , Radioisótopos de Galio/farmacocinética , Glioblastoma/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Medios de Contraste/química , Medios de Contraste/farmacocinética , Complejos de Coordinación/sangre , Complejos de Coordinación/química , Dendrímeros/química , Fluorodesoxiglucosa F18/química , Radioisótopos de Galio/sangre , Radioisótopos de Galio/química , Glioblastoma/patología , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata/patología
4.
Small ; 16(37): e2003290, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794645

RESUMEN

Bioimaging has revolutionized medicine by providing accurate information for disease diagnosis and treatment. Nanotechnology-based bioimaging is expected to further improve imaging sensitivity and specificity. In this context, supramolecular nanosystems based on self-assembly of amphiphilic dendrimers for single photon emission computed tomography (SPECT) bioimaging are developed. These dendrimers bear multiple In3+ radionuclides at their terminals as SPECT reporters. By replacing the macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid cage with the smaller 1,4,7-triazacyclononane-1,4,7-triacetic acid scaffold as the In3+ chelator, the corresponding dendrimer exhibits neutral In3+ -complex terminals in place of negatively charged In3+ -complex terminals. This negative-to-neutral surface charge alteration completely reverses the zeta-potential of the nanosystems from negative to positive. As a consequence, the resulting SPECT nanoprobe generates a highly sought-after biodistribution profile accompanied by a drastically reduced uptake in liver, leading to significantly improved tumor imaging. This finding contrasts with current literature reporting that positively charged nanoparticles have preferential accumulation in the liver. As such, this study provides new perspectives for improving the biodistribution of positively charged nanosystems for biomedical applications.


Asunto(s)
Dendrímeros , Nanopartículas , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
5.
Langmuir ; 36(20): 5671-5679, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32348150

RESUMEN

The sensing of small molecules poses the challenge of developing devices able to discriminate between compounds that may be structurally very similar. Here, attention has been paid to the use of self-assembled monolayer (SAM)-protected gold nanoparticles since they enable a modular approach to tune single-molecule affinity and selectivity simply by changing functional moieties (i.e., covering ligands), along with multivalent molecular recognition. To date, the discovery of monolayers suitable for a specific molecular target has relied on trial-and-error approaches, with ligand chemistry being the main criterion used to modulate selectivity and sensitivity. By using molecular dynamics, we showcase that either individual molecular characteristics and/or collective features such as ligand flexibility, monolayer organization, ligand local ordering, and interfacial solvent properties can also be exploited conveniently. The knowledge of the molecular mechanisms that drive the recognition of small molecules on SAM-covered nanoparticles will critically expand our ability to manipulate and control such supramolecular systems.

6.
Molecules ; 25(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102359

RESUMEN

Biology is dominated by polyanions (cell membranes, nucleic acids, and polysaccharides just to name a few), and achieving selective recognition between biological polyanions and synthetic systems currently constitutes a major challenge in many biomedical applications, nanovectors-assisted gene delivery being a prime example. This review work summarizes some of our recent efforts in this field; in particular, by using a combined experimental/computation approach, we investigated in detail some critical aspects in self-assembled nanomicelles and two major polyanions-DNA and heparin.


Asunto(s)
ADN/química , Heparina/química , Nanoestructuras/química , Polímeros/química , Tensoactivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Metilaminas/química , Micelas , Simulación de Dinámica Molecular , Polielectrolitos , Soluciones , Espermidina/química , Espermina/química , Termodinámica
7.
Small ; 15(17): e1900323, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30941901

RESUMEN

Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.


Asunto(s)
Flúor/química , Oro/química , Hidrógeno/química , Nanopartículas del Metal/química , Adsorción , Anisotropía , Apoptosis , Línea Celular Tumoral , Membrana Celular/química , Simulación por Computador , Citometría de Flujo , Humanos , Hidrocarburos/química , Ligandos , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Termodinámica
8.
J Am Chem Soc ; 140(47): 16264-16274, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30346764

RESUMEN

Small interfering RNA (siRNA) is emerging as a novel therapeutic for treating various diseases, provided a safe and efficient delivery is available. In particular, specific delivery to target cells is critical for achieving high therapeutic efficacy while reducing toxicity. Amphiphilic dendrimers are emerging as novel promising carriers for siRNA delivery by virtue of the combined multivalent cooperativity of dendrimers with the self-assembling property of lipid vectors. Here, we report a ballistic approach for targeted siRNA delivery to cancer cells using an amphiphilic dendrimer equipped with a dual targeting peptide bearing an RGDK warhead. According to the molecular design, the amphiphilic dendrimer was expected to deliver siRNA effectively, while the aim of the targeting peptide was to home in on tumors via interaction of its warhead with integrin and the neuropilin-1 receptor on cancer cells. Coating the positively charged siRNA/dendrimer delivery complex with the negatively charged segment of the targeting peptide via electrostatic interactions led to small and stable nanoparticles which were able to protect siRNA from degradation while maintaining the accessibility of RGDK for targeting cancer cells and preserving the ability of the siRNA to escape from endosomes. The targeted system had enhanced siRNA delivery, stronger gene silencing, and more potent anticancer activity compared to nontargeted or covalent dendrimer-based systems. In addition, neither acute toxicity nor induced inflammation was observed. Consequently, this delivery system constitutes a promising nonviral vector for targeted delivery and can be further developed to provide RNAi-based personalized medicine against cancer. Our study also gives new perspectives on the use of nanotechnology based on self-assembling dendrimers in various biomedical applications.


Asunto(s)
Antineoplásicos/uso terapéutico , Dendrímeros/química , Portadores de Fármacos/química , Neoplasias/terapia , Péptidos/química , ARN Interferente Pequeño/uso terapéutico , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacología , Femenino , Silenciador del Gen/efectos de los fármacos , Proteínas de Choque Térmico HSP27/antagonistas & inhibidores , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Integrinas/metabolismo , Masculino , Ratones Endogámicos BALB C , Chaperonas Moleculares , Nanopartículas/química , Neuropilina-1/metabolismo , Células PC-3 , Péptidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Tensoactivos/química , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Eur Biophys J ; 46(8): 749-771, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28865004

RESUMEN

Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.


Asunto(s)
Oro/química , Nanopartículas del Metal , Nanomedicina/métodos , Oro/metabolismo , Propiedades de Superficie
10.
Handb Exp Pharmacol ; 244: 27-50, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28667476

RESUMEN

This chapter presents the three-dimensional (3D) model of the Sigma1 receptor protein as obtained from homology modeling techniques. We show the applicability of this structure to docking-based virtual screening and discuss combined in silico/in vitro mutagenesis studies performed to validate the structural features of the Sigma1 receptor model and to qualify/quantify the prominent role of specific amino acid residues in ligand binding. The validation of the virtual 3D Sigma1 receptor model and its reliable applicability to docking-based virtual screening is of significance for rational ligand design, even in light of the recently reported crystal structure for the Sigma1 receptor.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Receptores sigma/química , Animales , Humanos , Ligandos , Mutagénesis Sitio-Dirigida , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Receptores sigma/genética , Receptores sigma/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Receptor Sigma-1
11.
Pharmaceutics ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675194

RESUMEN

Dendrimers, intricate macromolecules with highly branched nanostructures, offer unique attributes including precise control over size, shape, and functionality, making them promising candidates for a wide range of biomedical applications. The exploration of their interaction with biological environments, particularly human serum albumin (HSA), holds significant importance for biomedical utilization. In this study, the interaction between HSA and a recently developed self-assembling amphiphilic dendrimer (AD) was investigated using various experimental techniques. Fluorescence spectroscopy and isothermal titration calorimetry revealed moderate interactions between the protein and the AD nanomicelles (NMs), primarily attributed to favorable enthalpic contributions arising from electrostatic interactions and hydrogen bonding. Structural analysis indicated minimal changes in HSA upon complexation with the AD NMs, which was further supported by computational simulations demonstrating stable interactions at the atomistic level. These findings provide valuable insights into the binding mechanisms and thermodynamic parameters governing HSA/AD NM interactions, thereby contributing to the understanding of their potential biomedical applications.

12.
Mol Pharm ; 10(8): 3262-73, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23841848

RESUMEN

Small interfering RNA (siRNA) have attracted considerable attention, as compelling therapeutics providing safe and competent delivery systems are available. Dendrimers are emerging as appealing siRNA delivery vectors thanks to their unique, well-defined architecture and the resulting cooperativity and multivalency confined within a nanostructure. We have recently disclosed the structurally flexible fifth-generation TEA-core PAMAM dendrimer (G5) as an effective nanocarrier for delivery of sticky siRNA bearing long complementary sequence overhangs (dA)n/(dT)n (n = 5 or 7). Here, using combined experimental/computational approaches, we successfully clarified (i) the underlying mechanisms of interaction between the dendrimer nanovector G5 and siRNA molecules bearing either complementary or noncomplementary sequence overhangs of different length and chemistry and (ii) the impact of siRNA overhangs contributing toward the improved delivery potency. Using siRNA with complementary overhangs offer the best action in term of gene silencing through the formation of concatemers, that is, supramolecular structures resulting from synergistic and cooperative binding via (dA)n/(dT)n bridges (n = 5 or 7). On the other hand, although siRNA bearing long, noncomplementary overhangs (dA)n/(dA)n or (dT)n/(dT)n (n = 5 or 7) are endowed with considerably higher gene silencing potency than normal siRNA with (dT)2/(dT)2, they remain less effective than their sticky siRNA counterparts. The observed gene silencing potency depends on length, nature, and flexibility of the overhangs, which behave as a sort of clamps that hold and interact with the dendrimer nanovectors, thus impacting siRNA delivery performance and, ultimately, gene silencing. Our findings can be instrumental in designing siRNA entities with enhanced capability to achieve effective RNA interference for therapeutic applications.


Asunto(s)
Dendrímeros/química , Línea Celular Tumoral , Femenino , Silenciador del Gen/fisiología , Humanos , Masculino , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
13.
Eur J Pharm Sci ; 180: 106311, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273785

RESUMEN

Two clinically approved anticancer drugs targeting BRAF in melanoma patients - dabrafenib (DAB) and vemurafenib (VEM) - have been successfully encapsulated into nanomicelles formed upon self-assembly of an amphiphilic dendrimer AD based on two C18 aliphatic chains and a G2 PAMAM head. The process resulted in the formation of well-defined (∼10 nm) core-shell nanomicelles (NMs) with excellent encapsulation efficiency (∼70% for DAB and ∼60% for VEM) and good drug loading capacity (∼27% and ∼24% for DAB and VEM, respectively). Dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular simulation (MS) experiments were used, respectively, to determine the size and structure of the empty and drug-loaded nanomicelles (DLNMs), along with the interactions between the NMs and their cargoes. The in vitro release data revealed profiles governed by Fickian diffusion; moreover, for both anticancer molecules, an acidic environment (pH = 5.0) facilitated drug release with respect to physiological pH conditions (pH = 7.4). Finally, both DAB- and VEM-loaded NMs elicited enhanced response with respect to free drug treatments in 4 different melanoma cell lines.


Asunto(s)
Melanoma , Micelas , Humanos , Vemurafenib , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Melanoma/tratamiento farmacológico , Melanoma/patología
14.
Mol Pharm ; 9(11): 3107-26, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23020867

RESUMEN

Originally considered an enigmatic polypeptide, the σ(1) receptor has recently been identified as a unique ligand-regulated protein. Many studies have shown the potential of σ(1) receptor ligands for the treatment of various diseases of the central nervous system (CNS); nevertheless, almost no information about the 3D structure of the receptor and/or the possible modes of interaction of the σ(1) protein with its ligands have been unveiled so far. With the present work we validated our σ(1) 3D homology model and assessed its reliability as a platform for σ(1) ligand structure-based drug design. To this purpose, the 3D σ(1) model was exploited in the design of 33 new σ(1) ligands and in their ranking for receptor affinity by extensive molecular dynamics simulation-based free energy calculations. Also, the main interactions involved in receptor/ligand binding were analyzed by applying a per residue free energy deconvolution and in silico alanine scanning mutagenesis calculations. Subsequently, all compounds were synthesized in our laboratory and tested for σ(1) binding activity in vitro. The agreement between in silico and in vitro results confirms the reliability of the proposed σ(1) 3D model in the a priori prediction of the affinity of new σ(1) ligands. Moreover, it also supports and corroborates the currently available biochemical data concerning the σ(1) protein residues considered essential for σ(1) ligand binding and activity.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Receptores sigma/metabolismo , Simulación por Computador , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Mutación/genética , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Receptores sigma/química , Receptores sigma/genética
15.
Pharmacol Ther ; 232: 108009, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34619284

RESUMEN

The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.


Asunto(s)
Proteína BRCA1 , Neoplasias , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparación del ADN , Becas , Humanos , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
ChemMedChem ; 17(7): e202100735, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35077612

RESUMEN

A series of novel σ1 receptor ligands with a 4-(2-aminoethyl)piperidine scaffold was prepared and biologically evaluated. The underlying concept of our project was the improvement of the lipophilic ligand efficiency of previously synthesized potent σ1 ligands. The key steps of the synthesis comprise the conjugate addition of phenylboronic acid at dihydropyridin-4(1H)-ones 7, homologation of the ketones 8 and introduction of diverse amino moieties and piperidine N-substituents. 1-Methylpiperidines showed particular high σ1 receptor affinity and selectivity over the σ2 subtype, whilst piperidines with a proton, a tosyl moiety or an ethyl moiety exhibited considerably lower σ1 affinity. Molecular dynamics simulations with per-residue binding free energy deconvolution demonstrated that different interactions of the basic piperidine-N-atom and its substituents (or the cyclohexane ring) with the lipophilic binding pocket consisting of Leu105, Thr181, Leu182, Ala185, Leu186, Thr202 and Tyr206 are responsible for the different σ1 receptor affinities. Recorded logD7.4 and calculated clogP values of 4a and 18a indicate low lipophilicity and thus high lipophilic ligand efficiency. Piperidine 4a inhibited the growth of human non-small cell lung cancer cells A427 to a similar extent as the σ1 antagonist haloperidol. 1-Methylpiperidines 20a, 21a and 22a showed stronger antiproliferative effects on androgen negative human prostate cancer cells DU145 than the σ1 ligands NE100 and S1RA.


Asunto(s)
Antineoplásicos , Piperidinas , Receptores sigma , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Humanos , Ligandos , Neoplasias Pulmonares , Masculino , Piperidinas/química , Piperidinas/farmacología , Neoplasias de la Próstata , Receptores sigma/metabolismo , Relación Estructura-Actividad
17.
Nanoscale ; 14(26): 9286-9296, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35649277

RESUMEN

The alarming and prevailing antibiotic resistance crisis urgently calls for innovative "outside of the box" antibacterial agents, which can differ substantially from conventional antibiotics. In this context, we have established antibacterial candidates based on dynamic supramolecular dendrimer nanosystems self-assembled with amphiphilic dendrimers composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing distinct terminal functionalities. Remarkably, the amphiphilic dendrimer with amine terminals exhibited strong antibacterial activity against both Gram-positive and Gram-negative as well as drug-resistant bacteria, and prevented biofilm formation. Multidisciplinary studies combining experimental approaches and computer modelling together demonstrate that the dendrimer interacts and binds via electrostatic interactions with the bacterial membrane, where it becomes enriched and then dynamically self-assembles into supramolecular nanoassemblies for stronger and multivalent interactions. These, in turn, rapidly promote the insertion of the hydrophobic dendrimer tail into the bacterial membrane thereby inducing bacterial cell lysis and constituting powerful antibacterial activity. Our study presents a novel concept for creating nanotechnology-based antibacterial candidates via dynamic self-assembly and offers a new perspective for combatting recalcitrant bacterial infection.


Asunto(s)
Dendrímeros , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Biopelículas , Dendrímeros/química , Dendrímeros/farmacología , Pruebas de Sensibilidad Microbiana
18.
ACS Nano ; 16(12): 20902-20914, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36459668

RESUMEN

Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Interacciones Hidrofóbicas e Hidrofílicas
19.
J Colloid Interface Sci ; 607(Pt 2): 1373-1381, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34583042

RESUMEN

The ability to control the properties of monolayer protected gold nanoparticles (MPNPs) discloses unrevealed features stemming from collective properties of the ligands forming the monolayer and presents opportunities to design new materials. To date, the influence of ligand end-group size and capacity to form hydrogen bonds on structure and hydration of small MPNPs (<5 nm) has been poorly studied. Here, we show that both features determine ligands order, solvent accessibility, capacity to host hydrophobic compounds and interfacial properties of MPNPs. The polarity perceived by a radical probe and its binding constant with the monolayer investigated by electron spin resonance is rationalized by molecular dynamics simulations, which suggest that larger space-filling groups - trimethylammonium, zwitterionic and short polyethylene glycol - favor a radial organization of the thiolates, whereas smaller groups - as sulfonate - promote the formation of bundles. Zwitterionic ligands create a surface network of hydrogen bonds, which affects nanoparticle hydrophobicity and maximize the partition equilibrium constant of the probe. This study discloses the role of the chemistry of the end-group on monolayer features with effects that span from molecular- to nano-scale and opens the door to a shift in the conception of new MPNPs exploiting the end-group as a novel design motif.


Asunto(s)
Oro , Nanopartículas del Metal , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación de Dinámica Molecular
20.
Biosystems ; 202: 104354, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33444701

RESUMEN

Gold nanoparticles (AuNPs) are employed as drug carriers due to their inertness, non-toxicity, and ease of synthesis. An experimental search for the optimal AuNP design would require a systematic variation of physico-chemical properties which is time-consuming and expensive. Computational methods provide quicker and cheaper approach to complement experiments and provide useful guidelines. In this paper, we performed atomistic molecular dynamics simulations to study how the size, hydrophobicity, and concentration of the drug affect the structure of functionalized AuNPs in the aqueous environment. We simulated two groups of nano-systems functionalized with a zwitterionic background ligand, and a ligand carrying a drug (Quinolinol or Panobinostat). Results indicate that in the case of a hydrophobic drug (Quinolinol), the hydrophobicity drives the conformation changes of the coating layer. The tendency of the hydrophobic drug to reduce its solvent-accessible surface results in a decrease of the coating thickness and the overall NP size. Although the amount of accessible drug can be increased by increasing its initial concentration, it will compromise the solubility of the system. In the case of a hydrophilic drug (Panobinostat), the ligand in excess has a dominant influence on the final structure of the coating conformations. The percentage of accessible drug is significantly higher than in the hydrophobic systems for any given ratio. It implies that for hydrophilic systems we can generally expect higher biological efficiency. Our results highlight the importance of taking into account physico-chemical properties of drugs and ligands when developing gold-based nanosystems, especially in the case of hydrophobic drugs.


Asunto(s)
Antineoplásicos/química , Oro/química , Nanopartículas del Metal/química , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Fenómenos Químicos/efectos de los fármacos , Oro/administración & dosificación , Oro/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/administración & dosificación , Nanomedicina/métodos , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA