Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 19(1): 217, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37858141

RESUMEN

BACKGROUND: Vertical transmission is key for the maintenance of porcine reproductive and respiratory syndrome virus (PRRSV) infection. In vaccinated farms, vertical transmission can still occur despite sows having some level of immunity because of repeated vaccination or contact with the wild-type virus. The present study aimed to correlate the age of sows and the amplitude of neutralizing antibodies (Nab) (heterologous neutralization) with PRRSV-1 vertical transmission (VT). For this purpose, umbilical cords of 1,554 newborns (corresponding to 250 litters) were tested for PRRSV by RT-PCR in two PRRSV-unstable vaccinated farms. In parallel, the sows were bled after farrowing and the levels of antibodies were determined by ELISA and by the viral neutralization test against the vaccine virus, the virus circulating in the farm, and other unrelated contemporary PRRSV-1 strains. The relationship between the parity and the probability of delivering infected piglets and the presence of broadly Nabs examined. RESULTS: The proportion of VT events in the two examined farms ranged from 18.9% to 23.0%. Young sows (parity 1-2) were 1.7 times more likely to have VT than older sows (p < 0.05). Despite higher ELISA S/P antibody ratios in younger sows (p < 0.05), NAb against the resident farm strain were at a similar level between sows delivering infected and healthy piglets regardless of age, mostly with low titers (2-3 log2). The titers of NAb against the vaccine virus were also low, and no correlations with VT were observed. When a panel of another 4 strains (1 isolated in the 1990s, and 3 contemporary strains) were used for the neutralization test, most sow sera were not capable of neutralizing the contemporary strains. CONCLUSIONS: Titers of NAb could not be correlated with the occurrence of PRRSV VT. The amplitude of NAb present in most vaccinated sows is limited with a considerable proportion unresponsive regarding NAb production.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Vacunas Virales , Embarazo , Animales , Porcinos , Femenino , Anticuerpos Neutralizantes , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Granjas , Anticuerpos Antivirales , Enfermedades de los Porcinos/prevención & control
2.
BMC Vet Res ; 15(1): 441, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31805938

RESUMEN

BACKGROUND: Diarrhoea is a major cause of death in neonate pigs and most of the viruses that cause it are RNA viruses. Next Generation Sequencing (NGS) deeply characterize the genetic diversity among rapidly mutating virus populations at the interspecific as well as the intraspecific level. The diversity of RNA viruses present in faeces of neonatal piglets suffering from diarrhoea in 47 farms, plus 4 samples from non-diarrhoeic piglets has been evaluated by NGS. Samples were selected among the cases submitted to the Veterinary Diagnostic Laboratories of Infectious Diseases of the Universitat Autònoma de Barcelona (Barcelona, Spain) and Universidad de León (León, Spain). RESULTS: The analyses identified the presence of 12 virus species corresponding to 8 genera of RNA viruses. Most samples were co-infected by several viruses. Kobuvirus and Rotavirus were more commonly reported, with Sapovirus, Astrovirus 3, 4 and 5, Enterovirus G, Porcine epidemic diarrhoea virus, Pasivirus and Posavirus being less frequently detected. Most sequences showed a low identity with the sequences deposited in GenBank, allowing us to propose several new VP4 and VP7 genotypes for Rotavirus B and Rotavirus C. CONCLUSIONS: Among the cases analysed, Rotaviruses were the main aetiological agents of diarrhoea in neonate pigs. Besides, in a small number of cases Kobuvirus and Sapovirus may also have an aetiological role. Even most animals were co-infected in early life, the association with enteric disease among the other examined viruses was unclear. The NGS method applied successfully characterized the RNA virome present in faeces and detected a high level of unreported intraspecific diversity.


Asunto(s)
Diarrea/veterinaria , Heces/virología , Variación Genética , Virus ARN/genética , Enfermedades de los Porcinos/virología , Animales , Animales Recién Nacidos , Diarrea/virología , Filogenia , Porcinos
3.
Vet Res ; 49(1): 107, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340626

RESUMEN

This paper describes the results of two experiments regarding porcine reproductive and respiratory syndrome virus (PRRSV1): the first one studied the existence of bottlenecks in an experimental one-to-one model of transmission in pigs; while the second analysed the differences between viral quasi-species in vaccinated pigs that developed shorter or longer viraemias after natural challenge. Serum samples, as well as the initial inoculum, were deep-sequenced and a viral quasi-species was constructed per sample. For the first experiment, the results consistently reported a reduction in the quasi-species diversity after a transmission event, pointing to the existence of bottlenecks during PRRSV1 transmission. However, despite the identified preferred and un-preferred transmitted variants not being randomly distributed along the virus genome, it was not possible to identify any variant producing a structural change in any viral protein. In contrast, the mutations identified in GP2, nsp9 and M of the second experiment pointed to changes in the amino acid charges and the viral RNA-dependent RNA polymerase structure. The fact that the affected proteins are known targets of the immunity against PRRSV, plus the differential level of neutralizing antibodies present in pigs developing short or long viraemias, suggests that the immune response selected those changes.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Cuasiespecies , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Regulación Enzimológica de la Expresión Génica , Regulación Viral de la Expresión Génica/fisiología , Variación Genética , Genoma Viral , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Porcinos , Carga Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Viremia
4.
Vet Res ; 49(1): 19, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448955

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSv) infection alters the host's cellular and humoral immune response. Immunity against PRRSv is multigenic and vary between individuals. The aim of the present study was to compare several genes that encode for molecules involved in the immune response between two groups of vaccinated pigs that experienced short or long viremic periods after PRRSv challenge. These analyses include the sequencing of four SLA Class I, two Class II allele groups, and CD163, plus the analysis by quantitative realtime qRT-PCR of the constitutive expression of TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and other molecules in peripheral blood mononuclear cells.


Asunto(s)
Expresión Génica , Variación Genética , Inmunidad Innata/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , ARN Mensajero/genética , Viremia/microbiología , Animales , ARN Mensajero/metabolismo , Porcinos , Vacunas Virales/administración & dosificación
5.
Virus Evol ; 10(1): veae041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817667

RESUMEN

This study investigates the long-term evolutionary dynamics of porcine reproductive and respiratory syndrome virus (PRRSV-1) in an endemically infected and vaccinated pig herd. Over a one year and a half period, piglets from seven farrowing batches in a 300-sow PRRSV-vaccinated farm were monitored from birth to nine weeks of age by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Eighty-five PRRSV-positive samples were subjected to whole genome sequencing (Illumina Miseq), and 251 samples to open reading frame 5 (ORF5) sequencing. Farm-specific PRRSV variants' impact on anti-PRRSV antibodies was evaluated using enzyme-linked immunosorbent and neutralizing antibody assays. The replication kinetics and cytokine inhibition capabilities (IFN-α and TNF-α) of these variants were assessed in porcine alveolar macrophages. The study revealed fluctuating PRRSV-1 incidences in farrowing units and nurseries, attributed to two key evolutionary events: an escape variant emergence and a lateral introduction of a new strain. Initially, strain 1 variant α was swiftly replaced within weeks by variant 1ß (99.5 per cent genomic similarity), with twenty-five amino acid mutations, primarily in nsp1α, GP2, GP3, and GP5, including an additional glycosylation site and a deletion downstream the neutralization epitope of GP5. This shift to 1ß correlated with increased incidence in nurseries and higher viral loads, with sera from 1α-exposed animals showing reduced neutralization against 1ß. Consistently for in vitro assays, variant 1ß demonstrated enhanced replication in porcine alveolar macrophages but no difference regarding IFN-α or TNF-α responses. Later, a new strain (strain 2, 83.3 per cent similarity to strain 1) emerged and led to incidence resurgence because of the low cross reactivity with the previous antibodies. The study highlights PRRSV's rapid adaptability and challenges in controlling its spread, underscoring the necessity for more effective vaccines and eradication approaches.

6.
Porcine Health Manag ; 9(1): 40, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715214

RESUMEN

BACKGROUND: Vaccination of pigs against PCV2 is usually performed around weaning when animals still have maternally derived antibodies (MDA). The present study aimed to assess the possible interference of MDA in the development of the PCV2-specific immune response after vaccination of commercial weaners. For this purpose, a PRRS-negative 600-sow farrow-to-finish farm was selected. Half of the sows were vaccinated and revaccinated with Porcilis® PCV ID against PCV2 7 and 3 weeks before farrowing. After farrowing, piglets were tested by AlphaLisa to select 72 animals with high and low levels of MDA. Groups were further subdivided and vaccinated intradermally with Porcilis® PCV ID at 21 or 28 days of age. Unvaccinated controls were also included. Animals were followed afterward for 42 days to examine the development of PCV2-specific antibodies and interferon-γ secreting cells (IFN-γ SC). RESULTS: The average titres of antibodies of the groups vaccinated in the presence of low or high MDA levels were similar at 28 and 42 days post-vaccination while in the controls the titres declined throughout the observation period. Results of vaccinating at 21 or 28 days of age were equivalent with regard to antibody development. Regarding the IFN-γ SC, vaccinated animals produced significant frequencies of IFN-γ SC by day 28. Again, no differences were observed between the groups with high or low antibody levels. CONCLUSION: High levels of MDA did not interfere with the development of humoral and cell-mediated responses to Porcine circovirus 2 after intradermal vaccination at 21 or 28 days of age.

7.
Front Microbiol ; 14: 1109881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846785

RESUMEN

The present study was aimed at describing the infection dynamics, transmission, and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) after an outbreak in a 300-sow farrow-to-wean farm that was implementing a vaccination program. Three subsequent batches of piglets (9-11 litters/batch) were followed 1.5 (Batch 1), 8 (Batch 2), and 12 months after (Batch 3) from birth to 9 weeks of age. The RT-qPCR analysis showed that shortly after the outbreak (Batch 1), one third of sows were delivering infected piglets and the cumulative incidence reached 80% by 9 weeks of age. In contrast, in Batch 2, only 10% animals in total got infected in the same period. In Batch 3, 60% litters had born-infected animals and cumulative incidence rose to 78%. Higher viral genetic diversity was observed in Batch 1, with 4 viral clades circulating, of which 3 could be traced to vertical transmission events, suggesting the existence of founder viral variants. In Batch 3 though only one variant was found, distinguishable from those circulating previously, suggesting that a selection process had occurred. ELISA antibodies at 2 weeks of age were significantly higher in Batch 1 and 3 compared to Batch 2, while low levels of neutralizing antibodies were detected in either piglets or sows in all batches. In addition, some sows present in Batch 1 and 3 delivered infected piglets twice, and the offspring were devoid of neutralizing antibodies at 2 weeks of age. These results suggest that a high viral diversity was featured at the initial outbreak followed by a phase of limited circulation, but subsequently an escape variant emerged in the population causing a rebound of vertical transmission. The presence of unresponsive sows that had vertical transmission events could have contributed to the transmission. Moreover, the records of contacts between animals and the phylogenetic analyses allowed to trace back 87 and 47% of the transmission chains in Batch 1 and 3, respectively. Most animals transmitted the infection to 1-3 pen-mates, but super-spreaders were also identified. One animal that was born-viremic and persisted as viremic for the whole study period did not contribute to transmission.

8.
Porcine Health Manag ; 9(1): 1, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597152

RESUMEN

BACKGROUND: A strain of Porcine reproductive and respiratory syndrome virus (PRRSV), showing characteristics of enhanced virulence, affected a pyramidal production system from Spain with 7600 sows in 4 genetic nuclei and 13,000 sows in multipliers. Different PRRSV strains circulating in this production system from December 2020 to October 2021 were detected and sequenced. The spread of each isolate was examined and their impact on health and production in three of the affected farms was evaluated. RESULTS: The newly emerged PRRSV isolate with enhanced virulence entered the system before the onset of the study (January 2020) and afterwards four significantly different clades were detected during the study period in different farms, probably because of independent introduction events. The diversification of the enhanced virulence strain was higher for those clades (substitution rates up to 1.1% nucleotides/year) compared to other PRRSV strains present in the production system (up to 0.17%), suggesting a faster spread and adaptation. The impact of the infection in the first affected farm was dramatic, with an average abortion rate above 27% during 17 weeks before returning to the baseline production. Fertile sow mortality reached 6.5% for 39 weeks. In two farms infected later by other clades of this enhanced virulence strain, the impact was less acute; despite the fact that for parameters such as the proportion of stillbirths or mummies, more than 10 months were needed to recover pre-outbreak values. In the examined nurseries, mortalities reached peaks between 28 and 50% and several months were needed to return to normality. CONCLUSION: Introduction of a PRRSV strain of enhanced virulence in a production system where several farms were previously positive for other PRRSV strains, resulted in a fast spread such as would be observed in naïve farms. The productive and health impact was very high taking several months to return to normality.

9.
Vet Res ; 43: 24, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22452923

RESUMEN

In order to assess the dynamics of influenza virus infection in pigs, serological and virological follow-ups were conducted in two whole batches of pigs from two different farms (F1 and F2), from 3 weeks of age until market age. Anti-swine influenza virus (SIV) antibodies (measured by ELISA and hemagglutination inhibition) and nasal virus shedding (measured by RRT-PCR and isolation in embryonated chicken eggs and MDCK cells) were carried out periodically. SIV isolates were subtyped and hemagglutinin and neuraminidase genes were partially sequenced and analyzed phylogenetically. In F1, four waves of viral circulation were detected, and globally, 62/121 pigs (51.2%) were positive by RRT-PCR at least once. All F1 isolates corresponded to H1N1 subtype although hemagglutination inhibition results also revealed the presence of antibodies against H3N2. The first viral wave took place in the presence of colostral-derived antibodies. Nine pigs were positive in two non-consecutive sampling weeks, with two of the animals being positive with the same isolate. Phylogenetic analyses showed that different H1N1 variants circulated in that farm. In F2, only one isolate, H1N2, was detected and all infections were concentrated in a very short period of time, as assumed for a classic influenza outbreak. These findings led us to propose that influenza virus infection in pigs might present different patterns, from an epidemic outbreak to an endemic form with different waves of infections with a lower incidence.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética , Animales , Anticuerpos Antivirales/sangre , Perros , Ensayo de Inmunoadsorción Enzimática/veterinaria , Pruebas de Inhibición de Hemaglutinación/veterinaria , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Incidencia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Estudios Longitudinales , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Nariz/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Estudios Seroepidemiológicos , España/epidemiología , Porcinos , Enfermedades de los Porcinos/virología , Ensayo de Placa Viral/veterinaria , Proteínas Virales/metabolismo , Esparcimiento de Virus
10.
Front Immunol ; 13: 1020227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36798517

RESUMEN

Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major swine pathogens causing reproductive failure in sows. Although modified-live virus (MLV) vaccines are available, only partial protection against heterologous strains is produced, thus vaccinated sows can be infected and cause transplacental infection. The immune effector mechanisms involved are largely unknown. Methods: The present study investigated the role of cytotoxic lymphocytes, including cytotoxic T cells (CTL), NKT, and NK cells, from blood in preventing PRRSV-1 transplacental infection in vaccinated primiparous sows (two doses vaccinated). Sows from a PRRSV-1 unstable farm were bled just before the last month of gestation (critical period for transplacental infection), then followed to determine whether sows delivered PRRSV-1-infected (n=8) or healthy (n=10) piglets. After that, functions of CTL, NKT, and NK cells in the two groups of sows were compared. Results: No difference was found through cell surface staining. But upon in vitro re-stimulation with the circulating field virus, sows that delivered healthy piglets displayed a higher frequency of virus-specific CD107a+ IFN-γ-producing T cells, which accumulated in the CD4+ compartment including CD4 single-positive (CD4 SP) and CD4/CD8α double-positive (CD4/CD8α DP) subsets. The same group of sows also harbored a higher proportion of CD107a+ TNF-α-producing T cells that predominantly accumulated in CD4/CD8α double-negative (CD4/CD8α DN) subset. Consistently, CD4 SP and CD4/CD8α DN T cells from sows delivering healthy piglets had a higher virus-specific proliferative response. Additionally, in sows that delivered PRRSV-1-infected piglets, a positive correlation of virus-specific IFN-γ response with average Ct values of umbilical cords of newborn piglets per litter was observed. Conclusion: Our data strongly suggest that CTL responses correlate with protection against PRRSV-1 transplacental infection, being executed by CD4 T cells (IFN-γ related) and/or CD4/CD8α DN T cells (TNF-α related).


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Femenino , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Linfocitos T Citotóxicos , Factor de Necrosis Tumoral alfa , Anticuerpos Antivirales , Vacunas Atenuadas
11.
Microbiol Resour Announc ; 11(7): e0030422, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35652666

RESUMEN

This report describes 28 genome sequences from a new clade within subtype 1 of Betaarterivirus suid 1, formerly known as porcine reproductive and respiratory syndrome virus 1. All share a potential recombinant pattern, with a highly pathogenic Italian strain as the putative major parental sequence and three other possible parents.

12.
Front Vet Sci ; 9: 1014475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337208

RESUMEN

Respiratory diseases in weaned pigs are a common problem, with a complex etiology involving both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs, collected from nurseries (55 cases) under the suspicion of swine influenza A virus (swIAV) and submitted by swine veterinarians for diagnosis. The other ten viruses included in the study were influenza B (IBV) and D (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), Porcine circovirus 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 (PPIV1) and Swine orthopneumovirus (SOV). Twenty-six swIAV-positive cases and twenty-nine cases of swIAV-negative respiratory disease were primarily established. While IBV, IDV, PCV4 and PPIV1 were not found in any of the cases, PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease (p < 0.05). Overall, PCV3, PRRSV, and PCMV were the most frequently detected agents at herd level. Taken individually, virus prevalence was: swIAV, 48.6%; PRCV, 48.0%; PRRSV, 31.6%; SOV, 33.8%; PCMV, 48.3%, PCV2, 36.0%; and PCV3, 33.0%. Moreover, low Ct values (<30) were common for all agents, except PCV2 and PCV3. When the correlation between pathogens was individually examined, the presence of PRRSV was negatively correlated with swIAV and PRCV, while was positively associated to PCMV (p < 0.05). Also, PRCV and SOV were positively correlated between them and negatively with PCMV. Besides, the analysis of suckling pig samples, collected in subclinically infected farrowing units under an influenza monitoring program, showed that circulation of PRCV, PCMV, SOV, and PCV3 started during the early weeks of life. Interestingly, in those subclinically infected units, none of the pathogens was found to be correlated to any other. Overall, our data may contribute to a better understanding of the complex etiology and epidemiology of respiratory diseases in weaners. This is the first report of SOV in Spain and shows, for the first time, the dynamics of this pathogen in swine farms.

13.
Parasit Vectors ; 15(1): 6, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983610

RESUMEN

BACKGROUND: There is limited clinical or epidemiological knowledge regarding Bartonella infection in cats, and no serological studies have compared the presence of antibodies against different Bartonella species. Moreover, there are limited feline Bartonella studies investigating co-infections with other vector-borne pathogens and the associated risk factors. Therefore, the objective of this study was to investigate Bartonella spp. infections and co-infections with other pathogens in cats from Barcelona (Spain) based on serological and/or molecular techniques and to determine associated risk factors. METHODS: We studied colony and owned cats (n = 135). Sera were tested for Bartonella henselae-, Bartonella quintana-, and Bartonella koehlerae-specific antibodies using endpoint in-house immunofluorescence antibody assays. Bartonella real-time PCR (qPCR) and conventional PCR (cPCR) were performed. In addition, cPCR followed by DNA sequencing was performed for other pathogenic organisms (Anaplasma, Babesia, Cytauxzoon, Ehrlichia, Hepatozoon, hemotropic Mycoplasma, and Theileria spp.). RESULTS: From 135 cats studied, 80.7% were seroreactive against at least one Bartonella species. Bartonella quintana, B. koehlerae, and B. henselae seroreactivity was 67.4, 77.0, and 80.7%, respectively. Substantial to almost perfect serological agreement was found between the three Bartonella species. Colony cats were more likely to be Bartonella spp.-seroreactive than owned cats. Moreover, cats aged ≤ 2 years were more likely to be Bartonella spp.-seroreactive. Bartonella spp. DNA was detected in the blood of 11.9% (n = 16) of cats. Cats were infected with B. henselae (n = 12), B. clarridgeiae (n = 3), and B. koehlerae (n = 1). Mycoplasma spp. DNA was amplified from 14% (n = 19) of cat blood specimens. Cats were infected with Mycoplasma haemofelis (n = 8), Candidatus M. haemominutum (n = 6), Candidatus Mycoplasma turicensis (n = 4), and Mycoplasma wenyonii (n = 1). Anaplasma, Babesia, Cytauxzoon, Ehrlichia spp., Hepatozoon, and Theileria spp. DNA was not amplified from any blood sample. Of the 16 Bartonella spp.-infected cats based on PCR results, six (37%) were co-infected with Mycoplasma spp. CONCLUSIONS: Bartonella spp. and hemoplasma infections are prevalent in cats from the Barcelona area, whereas infection with Anaplasma spp., Babesia, Cytauxzoon, Ehrlichia spp., Hepatozoon, and Theileria infections were not detected. Co-infection with hemotropic Mycoplasma appears to be common in Bartonella-infected cats. To our knowledge, this study is the first to document M. wenyonii is infection in cats.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Infecciones por Bartonella/veterinaria , Bartonella/inmunología , Enfermedades de los Gatos/microbiología , Animales , Bartonella/genética , Infecciones por Bartonella/sangre , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/transmisión , Enfermedades de los Gatos/sangre , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/transmisión , Gatos , Estudios Transversales , ADN Bacteriano/sangre , ADN Bacteriano/aislamiento & purificación , ADN Espaciador Ribosómico/química , Femenino , Técnica del Anticuerpo Fluorescente/veterinaria , Masculino , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , Estudios Prospectivos , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estudios Seroepidemiológicos , España/epidemiología
14.
Vet Rec Open ; 9(1): e34, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35414939

RESUMEN

Background: Porcine reproductive and respiratory syndrome virus (PRRSV) vaccination is usually based on administering periodically PRRS modified live virus (MLV) in sows throughout their life. Using this schedule, transfer of maternally derived antibodies to the offspring is limited. The aim of the present study was to test the concept of priming with an MLV and boosting with a commercial inactivated virus vaccine in sows to reduce PRRSV incidence and improve productivity. Methods: On two farms, all the sows were vaccinated with a MLV vaccine at week 8 of gestation. Then two groups were designated, one group was re-vaccinated in the third week prior to farrowing and using a commercial inactivated vaccine (the PG group). The second group was the control group (C). Assays for PRRSV infection and productive parameters were evaluated. Results: For both farms, the incidence of PRRSV was lower at 6 weeks of age in PG than in C (p < 0.05). At weaning the proportion of PRRSV seropositive piglets was higher for PG as well (p < 0.05). The litters from C sows from both farms showed a higher pre-weaning mortality (odds ratio, C vs. PG = 1.18 ± 0.09; p < 0.05). Conclusions: Administration of the vaccine in sows before farrowing was safe and associated with reduced incidence of PRRSV in piglets up to 6 weeks of age.

15.
Porcine Health Manag ; 8(1): 47, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333756

RESUMEN

The purpose of this study was to compare the immune response generated by the intramuscular and the intradermal vaccination route against the porcine reproductive and respiratory syndrome virus (PRRSV). Piglets from a seronegative and a seropositive farm were selected (n = 28 piglets per farm), and each group was divided into two groups and vaccinated after weaning with modified live vaccine Unistrain® PRRS (Laboratorios Hipra Amer, Spain) by the intramuscular (IM) or the intradermic (ID) route. For the following 6 weeks, animals were weekly bled to assess the humoral response by PRRSV-specific antibody ELISA and viral neutralisation test. At 0-, 3-, 4- and 6 weeks post-vaccination, peripheral mononuclear blood cells (PBMC) from eight animals per group were recovered to analyse cellular response by IFN-γ ELISPOT and lymphoproliferation. Serum IL-12 was also quantified by ELISA. Seroconversion was first detected 14 days post-vaccination (dpv) for both IM and ID routes, and peaked at 35 dpv (both IM groups and ID seropositive) or 42 dpv (ID seronegative). At 3 weeks after vaccination, 6/27 (22.22%) animals from negative origin had not seroconverted, and neutralising titres were significantly lower at 35 dpv compared to the seropositive origin (mean log2 titres of 1.36 and 4.25 respectively) Also, it was 10 times more probable for them to have high levels of IL-12 a week after vaccination than for animals of seropositive origin. Cellular immune response analysed by lymphoproliferation and IFN-γ ELISPOT was already present at 21 dpv and until 42 dpv, with no significant differences between groups except for a higher lymphoproliferation at 35 dpv in the IM seropositive group (Kruskal-Wallis, p < 0.05). These results indicate that the intradermal route induces an immune response equivalent to the classical intramuscular route even in presence of non-neutralising maternal immunity, which in this study has proven to facilitate seroconversion after vaccination with an heterologous strain.

16.
Microb Biotechnol ; 15(3): 1007-1016, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33656781

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a viral disease defined by reproductive problems, respiratory distress and a negative impact on growth rate and general condition. Virulent PRRS virus (PRRSV) strains have emerged in the last years with evident knowledge gaps in their impact on the host immune response. Thus, the present study examines the impact of acute PRRS virus (PRRSV) infection, with two strains of different virulence, on selected immune parameters and on the gut microbiota composition of infected pigs using 16S rRNA compositional sequencing. Pigs were infected with a low virulent (PRRS_3249) or a virulent (Lena) PRRSV-1 strain and euthanized at 1, 3, 6, 8 or 13 days post-inoculation (dpi). Faeces were collected from each animal at the necropsy time-point. Alpha and beta diversity analyses demonstrated that infection, particularly with the Lena strain, impacted the microbiome composition from 6 dpi onwards. Taxonomic differences revealed that infected pigs had higher abundance of Treponema and Methanobrevibacter (FDR < 0.05). Differences were more considerable for Lena- than for PRRS_3249-infected pigs, showing the impact of strain virulence in the intestinal changes. Lena-infected pigs had reduced abundancies of anaerobic commensals such as Roseburia, Anaerostipes, Butyricicoccus and Prevotella (P < 0.05). The depletion of these desirable commensals was significantly correlated to infection severity measured by viraemia, clinical signs, lung lesions and immune parameters (IL-6, IFN-γ and Hp serum levels). Altogether, the results from this study demonstrate the indirect impact of PRRSV infection on gut microbiome composition in a strain virulence-dependent fashion and its association with selected immune markers.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , ARN Ribosómico 16S/genética , Porcinos , Virulencia
17.
Anal Chim Acta ; 1181: 338933, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34556218

RESUMEN

Influenza viruses are highly variable pathogens that infect a wide range of mammalian and avian species. According to the internal conserved proteins (nucleoprotein: NP, and matrix proteins: M), these viruses are classified into type A, B, C, and D. Influenza A virus in swine is of significant importance to the industry since it is responsible for endemic infections that lead to high economic loses derived from poor weight gain, reproductive disorders, and the role it plays in Porcine Respiratory Disease Complex (PRDC). To date, swine influenza virus (SIV) diagnosis continues to be based in complex and expensive technologies such as RT-qPCR. In this study, we aimed to improve actual tools by the implementation of aptamers as capture molecules. First, three different aptamers have been selected using as target the recombinant NP of Influenza A virus expressed in insect cells. Then, these molecules have been used for the development of an Enzyme-Linked AptaSorbent Assay (ELASA) in combination with specific monoclonal antibodies for Influenza A detection. A total of 171 field samples (nasal swabs) have been evaluated with the newly developed assay obtaining a 79.7% and 98.1% sensitivity and specificity respectively, using real time RT-PCR as standard assay. These results suggest that the assay is a promising method that could be used for Influenza A detection in analysis laboratories facilitating surveillance labours.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Humanos , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/veterinaria , Porcinos , Enfermedades de los Porcinos/diagnóstico
18.
Transbound Emerg Dis ; 68(2): 519-530, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32619306

RESUMEN

The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT-PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT-qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004-05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.


Asunto(s)
Brotes de Enfermedades/veterinaria , Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Perros , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Humanos , Virus de la Influenza A/genética , Estudios Longitudinales , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , España , Porcinos , Enfermedades de los Porcinos/epidemiología
19.
Animals (Basel) ; 10(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081216

RESUMEN

Vaccination is reported as a stressful and painful event for animals. This study investigated whether needle-free intradermal vaccination improves the welfare of weaned pigs through the reduction of stress and pain biomarkers and improvement of behavioural parameters compared to traditional intramuscular injection with a needle. A total of 339 weaned piglets were allocated to 3 treatment groups: Intradermal Application of Liquids (IDAL) pigs, vaccinated against Porcine Circovirus type 2 (PCV2) by means of intradermal vaccination using a needle-free device Porcilis® PCV ID; Intramuscular (IM) pigs vaccinated against PCV2 with Porcilis® PCV intramuscularly with a needle; CONTROL pigs were managed identically but did not receive any vaccine injection. At the time of the injection, the reaction of IDAL piglets was similar to control piglets, whereas a greater percentage of piglets vaccinated intramuscularly displayed high-pitch vocalizations (7% CONTROL, 7% IDAL, 32% IM) and retreat attempts (3% CONTROL, 7% IDAL, 39% IM). The day after vaccination, IDAL piglets did not differ from the control piglets for any of the behavioural variables studied through scan samplings. IM piglets showed a lower frequency of social negative interactions (p = 0.001) and rope manipulation (p = 0.04) compared to the CONTROL group. Resting postures did not differ between treatments. At 28 h post-vaccination, IDAL piglets presented lower blood C-reactive protein levels (CONTROL = 20 µg/mL; IDAL = 39 µg/mL; IM = 83 µg/mL, p < 0.0001) and blood Haptoglobin (CONTROL = 1.8 mg/mL; IDAL = 1.9 mg/mL vs. IM = 3.1 mg/mL, p < 0.0001) compared to IM piglets. Salivary chromogranin A and alpha-amylase did not differ between treatment groups when measured 25 min post-vaccination. The method of vaccination did not affect the growth of the piglets or their rectal temperature. These results support that needle-free intradermal vaccination reduces vaccination-related pain in growing pigs.

20.
Vet Rec ; 186(4): 123, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575761

RESUMEN

BACKGROUND: Sows in breeding herds are often mass vaccinated against porcine reproductive and respiratory syndrome (PRRS) every few months using modified live vaccines (MLV). Field veterinarians repeatedly report that multiple vaccinated sows test negative in ELISA. Obviously, this creates uncertainty when assessing the compliance of vaccination and the status of sows. METHODS: In the present study, four commercial ELISAs were used to assess the serological PRRS status in gilts and sows of three farms that were PRRS MLV vaccinated every four months. Animals were tested before vaccination (BV) and postvaccination (PV). Total and neutralising antibodies and cell-mediated responses were also measured in animals that yielded negative results in all ELISAs. RESULTS: The proportion of seronegative animals BV varied depending on the farm and the ELISA used. When samples were analysed using only one ELISA, a substantial number of negative results obtained BV remained as negative afterwards. Five animals were negative BV and PV with all the examined ELISAs. Those animals also yielded negative results in all the other immunological assays. CONCLUSION: Our findings suggest that the use of ELISA for monitoring multiple PRRS MLV vaccinated sows is very limited due to the variability of the humoral responses and the moderate agreement between tests.


Asunto(s)
Inmunidad Humoral , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunación/veterinaria , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Masculino , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Porcinos , Vacunación/métodos , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA