Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 26(30): 305705, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26159463

RESUMEN

NiO nanoparticles (NPs) with a nominal size range of 2-10 nm, synthesized via high-temperature pyrolysis of a nickel nitrate, have been extensively investigated using neutron diffraction and magnetic (ac and dc) measurements. The magnetic behavior of the NPs changes noticeably when their diameter decreases below 4 nm. For NPs larger than or equal to this size, Rietveld analysis of the room temperature neutron diffraction patterns reveals that there is a reduction in the expected magnetic moment per [Formula: see text] ion with respect to bulk NiO, which is linked to the existence of a magnetically disordered shell at the NP surface. The presence of two peaks in the temperature dependence of both the dc magnetization after zero-field-cooling and the real part of the ac magnetic susceptibility is explained in terms of a core (antiferromagnetic, AFM)/shell (spin glass, SG) morphology. The high-temperature peak ([Formula: see text] K) is associated with collective blocking of the uncompensated magnetic moments inside the AFM core. The low-temperature peak ([Formula: see text] K) is a signature of a SG-like freezing of the surface [Formula: see text] spins. In addition, an exchange bias (EB) effect emerges due to the core/shell magnetic coupling. The cooling field and temperature dependences of the EB effect and the coercive field are discussed in terms of the core size and the effective magnetic anisotropy of the NPs. However, NiO NPs of 2 nm in size no longer show AFM order and the [Formula: see text] magnetic moments freeze into a SG-like state below [Formula: see text] K, with no evidence of EB effect.

2.
J Hazard Mater ; 350: 55-65, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448214

RESUMEN

The present study focuses on soil washing enhancement via soil pretreatment with nanoscale zero-valent iron (nZVI) for the remediation of potentially toxic elements. To this end, soil polluted with As, Cu, Hg, Pb and Sb was partitioned into various grain sizes (500-2000, 125-500 and <125 µm). The fractions were pretreated with nZVI and subsequently subjected, according to grain size, to Wet-High Intensity Magnetic Separation (WHIMS) or hydrocycloning. The results were compared with those obtained in the absence of nanoparticles. An exhaustive characterization of the magnetic signal of the nanoparticles was done. This provided valuable information regarding potentially toxic elements (PTEs) fate, and allowed a metallurgical accounting correction considering the dilution effects caused by nanoparticle addition. As a result, remarkable recovery yields were obtained for Cu, Pb and Sb, which concentrated with the nZVI in the magnetically separated fraction (WHIMS tests) and underflow (hydrocyclone tests). In contrast, Hg, concentrated in the non-magnetic fraction and overflow respectively, while the behavior of As was unaltered by the nZVI pretreatment. All things considered, the addition of nZVI enhanced the efficiency of soil washing, particularly for larger fractions (125-2000 µm). The proposed methodology lays the foundations for nanoparticle utilization in soil washing operations.

3.
Chemosphere ; 107: 290-296, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24418067

RESUMEN

Sandy loam soil polluted with heavy metals (As, Cu, Pb and Zn) from an ancient Mediterranean Pb mining and metallurgy site was treated by means of wet high-intensity magnetic separation to remove some of the pollutants therein. The treated fractions were chemically analysed and then subjected to magnetic characterisation, which determined the high-field specific (mass), magnetic susceptibility (κ) and the specific (mass) saturation magnetisation (σS), through isothermal remanent magnetisation (IRM) curves. From the specific values of κ and σS, a new expression to assess the performance of the magnetic separation operation was formulated and verified by comparison with the results obtained by traditional chemical analysis. The magnetic study provided valuable information for the exhaustive explanation of the operation, and the deduced mathematical expression was found to be appropriate to estimate the performance of the separation operation. From these results we determined that magnetic soil washing was effective for the treatment of the contaminated soil, concentrating the majority of the heavy metals and peaking its separation capacity at 60% of the maximum output voltage.


Asunto(s)
Fenómenos Magnéticos , Metalurgia , Metales Pesados/aislamiento & purificación , Minería , Contaminantes del Suelo/aislamiento & purificación , Suelo/química , Estudios de Factibilidad , Metales Pesados/análisis , Contaminantes del Suelo/análisis
4.
Nanoscale ; 6(1): 457-65, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24217131

RESUMEN

The possibility of tuning the magnetic behaviour of nanostructured 3d transition metal oxides has opened up the path for extensive research activity in the nanoscale world. In this work we report on how the antiferromagnetism of a bulk material can be broken when reducing its size under a given threshold. We combined X-ray diffraction, high-resolution transmission electron microscopy, extended X-ray absorption fine structure and magnetic measurements in order to describe the influence of the microstructure and morphology on the magnetic behaviour of NiO nanoparticles (NPs) with sizes ranging from 2.5 to 9 nm. The present findings reveal that size effects induce surface spin frustration which competes with the expected antiferromagnetic (AFM) order, typical of bulk NiO, giving rise to a threshold size for the AFM phase to nucleate. Ni(2+) magnetic moments in 2.5 nm NPs seem to be in a spin glass (SG) state, whereas larger NPs are formed by an uncompensated AFM core with a net magnetic moment surrounded by a SG shell. The coupling at the core-shell interface leads to an exchange bias effect manifested at low temperature as horizontal shifts of the hysteresis loop (~1 kOe) and a coercivity enhancement (~0.2 kOe).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA