Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
EMBO J ; 40(1): e104273, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33264441

RESUMEN

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Transcripción Genética/genética , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipocótilo/genética , Fitocromo/genética
2.
New Phytol ; 239(4): 1190-1202, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37282777

RESUMEN

Shade tolerance is an ecological concept used in a wide range of disciplines, from plant physiology to landscaping or gardening. It refers to the strategy of some plants to persist and even thrive in environments with low light levels because of the shade produced by the vegetation proximity (e.g. in the understory). Shade tolerance influences the organization, structure, functioning, and dynamics of plant communities. However, little is known about its molecular and genetic basis. By contrast, there is a good understanding on how plants deal with the proximity of other plants, a divergent strategy used by most crops to respond to vegetation proximity. While generally shade-avoiding species strongly elongate in response to the proximity of other plants, shade-tolerant species do not. Here we review the molecular mechanisms that control the regulation of hypocotyl elongation in shade-avoiding species as a reference framework to understand shade tolerance. Comparative studies indicate that shade tolerance is implemented by components also known to regulate hypocotyl elongation in shade-avoiding species. These components, however, show differential molecular properties that explain how, in response to the same stimulus, shade-avoiding species elongate while shade-tolerant ones do not.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Luz , Hipocótilo/metabolismo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo
3.
Plant Physiol ; 189(3): 1450-1465, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35266544

RESUMEN

Light stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange carrot (Daucus carota) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes, such as DcPSY1 and DcPSY2, reducing carotenoid accumulation. By means of RNA sequencing, in a previous analysis, we observed that carrot PHYTOCHROME RAPIDLY REGULATED1 (DcPAR1) is more highly expressed in the underground grown taproot compared with those grown in light. PAR1 is a transcriptional cofactor with a negative role in shade avoidance syndrome regulation in Arabidopsis (Arabidopsis thaliana) through the dimerization with PHYTOCHROME-INTERACTING FACTORs (PIFs), allowing a moderate synthesis of carotenoids. Here, we show that overexpressing AtPAR1 in carrot increases carotenoid production in taproots grown underground as well as DcPSY1 expression. The high expression of AtPAR1 and DcPAR1 led us to hypothesize a functional role of DcPAR1 that was verified through in vivo binding to AtPIF7 and overexpression in Arabidopsis, where AtPSY expression and carotenoid accumulation increased together with a photomorphogenic phenotype. Finally, DcPAR1 antisense carrot lines presented a dramatic decrease in carotenoid levels and in relative expression of key carotenogenic genes as well as impaired taproot development. These results suggest that DcPAR1 is a key factor for secondary root development and carotenoid synthesis in carrot taproot grown underground.


Asunto(s)
Arabidopsis , Daucus carota , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Carotenoides/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo/metabolismo
4.
Plant Physiol ; 186(4): 2137-2151, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618102

RESUMEN

When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.


Asunto(s)
Aclimatación , Brassicaceae/fisiología , Luz , Brassicaceae/efectos de la radiación , Especificidad de la Especie
5.
Plant Cell ; 31(2): 384-398, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30705135

RESUMEN

Plants use light as energy for photosynthesis but also as a signal of competing vegetation. Using different concentrations of norflurazon and lincomycin, we found that the response to canopy shade in Arabidopsis (Arabidopsis thaliana) was repressed even when inhibitors only caused a modest reduction in the level of photosynthetic pigments. High inhibitor concentrations resulted in albino seedlings that were unable to elongate when exposed to shade, in part due to attenuated light perception and signaling via phytochrome B and phytochrome-interacting factors. The response to shade was further repressed by a retrograde network with two separate nodes represented by the transcription factor LONG HYPOCOTYL 5 and the carotenoid-derived hormone abscisic acid. The unveiled connection among chloroplast status, light (shade) signaling, and developmental responses should contribute to achieve optimal photosynthetic performance under light-changing conditions.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Fitocromo/metabolismo , Fitocromo B/metabolismo
6.
Plant Cell ; 31(11): 2649-2663, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31530733

RESUMEN

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.


Asunto(s)
Arabidopsis/fisiología , Cardamine/fisiología , Luz , Fitocromo/metabolismo , Plantones/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis , Cardamine/genética , Cardamine/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/efectos de la radiación , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
7.
Physiol Plant ; 169(3): 407-417, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32222987

RESUMEN

Perception of vegetation proximity or plant shade informs of potential competition for resources by the neighboring vegetation. As vegetation proximity impacts on both light quantity and quality, perception of this cue by plant photoreceptors reprograms development to result in responses that allow plants to compete with the neighboring vegetation. Developmental reprogramming involves massive and rapid changes in gene expression, with the concerted action of photoreceptors and downstream transcription factors. Changes in gene expression can be modulated by epigenetic processes that alter chromatin compaction, influencing the accessibility and binding of transcription factors to regulatory elements in the DNA. However, little is known about the epigenetic regulation of plant responses to the proximity of other plants. In this manuscript, we review what is known about plant shade effects on chromatin changes at the cytological level, that is, changes in nuclear morphology and high order chromatin density. We address which are the specific histone post-transcriptional modifications that have been associated with changes in shade-regulated gene expression, such as histone acetylation and histone methylation. Furthermore, we explore the possible mechanisms that integrate shade signaling components and chromatin remodelers to settle epigenetic marks at specific loci. This review aims to be a starting point to understand how a specific environmental cue, plant shade, integrates with chromatin dynamics to implement the proper acclimation responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Cromatina , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas
8.
Physiol Plant ; 169(3): 297-300, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32602159

RESUMEN

Light is a key resource for plants as it fuels photosynthesis. It also provides essential information about their habitat. Thus, light tracking is of great importance to plants throughout their life cycle. To gain information about their light environment, plants possess light receptors that cover the perception of the complete light spectrum, including light invisible to the human eye (far-red and ultra-violet light). The information sensed by these photoreceptors is utilized for optimal growth during day-night cycles and in sub-optimal light conditions, such as shaded areas and high-light sun flecks. Plant photobiology research focuses on the perception of light by plants, their developmental adaptations to a changing light environment and the mechanistic and genetic basis of these adaptations. The International Symposium on Plant Photobiology (ISPP) is a biannual meeting where the world's leaders, as well as upcoming talents in the field, gather to share their latest results and discuss future directions. The past edition was held between June 3 and 8 of 2019 in the beautiful PRBB research park building on the seafront of the city of Barcelona (Spain). The ISPP2019 was organized by a gender-balanced committee formed by two junior (Lot Gommers and Jordi Moreno-Romero) and two senior researchers (Jamie F. Martínez-Garcia and Elena Monte).


Asunto(s)
Fotobiología , Plantas , Adaptación Fisiológica , Color , Fotosíntesis
9.
Development ; 143(9): 1623-31, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26989173

RESUMEN

When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC). DRA2, together with other nucleoporins, participates positively in the control of the hypocotyl elongation response to plant proximity, a role that can be considered dependent on the nucleocytoplasmic transport of macromolecules (i.e. is transport dependent). In addition, our results reveal a specific role for DRA2 in controlling shade-induced gene expression. We suggest that this novel regulatory role of DRA2 is transport independent and that it might rely on its dynamic localization within and outside of the NPC. These results provide mechanistic insights in to how SAS responses are rapidly established by light conditions. They also indicate that nucleoporins have an active role in plant signaling.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Proteínas de Complejo Poro Nuclear/genética , Transporte Activo de Núcleo Celular/genética , Arabidopsis/genética , Hipocótilo/genética , Luz , Poro Nuclear/genética , Poro Nuclear/metabolismo , Plantas Modificadas Genéticamente/genética
11.
New Phytol ; 216(3): 798-813, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28805249

RESUMEN

In plants, perception of vegetation proximity by phytochrome photoreceptors activates a transcriptional network that implements a set of responses to adapt to plant competition, including elongation of stems or hypocotyls. In Arabidopsis thaliana, the homeodomain-leucine zipper (HD-Zip) transcription factor ARABIDOPSIS THALIANA HOMEOBOX 4 (ATHB4) regulates this and other responses, such as leaf polarity. To better understand the shade regulatory transcriptional network, we have carried out structure-function analyses of ATHB4 by overexpressing a series of truncated and mutated forms and analyzing three different responses: hypocotyl response to shade, transcriptional activity and leaf polarity. Our results indicated that ATHB4 has two physically separated molecular activities: that performed by HD-Zip, which is involved in binding to DNA-regulatory elements, and that performed by the ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-associated amphiphilic repression (EAR)-containing N-terminal region, which is involved in protein-protein interaction. Whereas both activities are required to regulate leaf polarity, DNA-binding activity is not required for the regulation of the seedling responses to plant proximity, which indicates that ATHB4 works as a transcriptional cofactor in the regulation of this response. These findings suggest that transcription factors might employ alternative mechanisms of action to regulate different developmental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Hipocótilo/fisiología , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Plantones/fisiología , Factores de Transcripción/química , Factores de Transcripción/genética
12.
Plant Physiol ; 169(2): 1240-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246448

RESUMEN

An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUC8, to be transcriptionally up-regulated, which correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade-avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the direct control of HD-ZIPIII/KAN.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/genética , ADN de Plantas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Plantas Modificadas Genéticamente , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal
13.
Plant Physiol ; 169(3): 1584-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26082398

RESUMEN

Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carotenoides/biosíntesis , Regulación de la Expresión Génica de las Plantas/fisiología , Luz , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regiones Promotoras Genéticas , Plantones , Factores de Transcripción
14.
Plant J ; 78(1): 1-15, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24460550

RESUMEN

A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C. hirsuta and show that the genome structure of C. hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C. hirsuta and A. thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C. hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C. hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.


Asunto(s)
Cardamine/genética , Cromosomas de las Plantas/genética , Variación Genética , Genoma de Planta/genética , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Brassicaceae/citología , Brassicaceae/genética , Brassicaceae/fisiología , Cardamine/citología , Cardamine/fisiología , Ambiente , Evolución Molecular , Genotipo , Cariotipo , Fenotipo , Filogeografía , Componentes Aéreos de las Plantas/citología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/fisiología , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Sitios de Carácter Cuantitativo , Transcriptoma
15.
Plant Cell ; 24(7): 2812-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22851763

RESUMEN

A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Evolución Molecular , Flores/citología , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/genética , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Motivos de Nucleótidos/genética , Fenotipo , Filogenia , Fitocromo B/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína/genética , Análisis de Secuencia de ADN , Transcriptoma
16.
Plant J ; 75(6): 989-1002, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23763263

RESUMEN

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light with a reduced red to far-red ratio, indicative of vegetation proximity or shade. These responses, including elongation growth, anticipate eventual shading from potential competitor vegetation by overgrowing neighboring plants or flowering to ensure production of viable seeds for the next generation. In Arabidopsis thaliana seedlings, the SAS includes dramatic changes in gene expression, such as induction of PHYTOCHROME RAPIDLY REGULATED 1 (PAR1), encoding an atypical basic helix-loop-helix (bHLH) protein that acts as a transcriptional co-factor to repress hypocotyl elongation. Indeed, PAR1 has been proposed to act fundamentally as a dominant negative antagonist of conventional bHLH transcription factors by forming heterodimers with them to prevent their binding to DNA or other transcription factors. Here we report the identification of PAR1-interacting factors, including the brassinosteroid signaling components BR-ENHANCED EXPRESSION (BEE) and BES1-INTERACTING MYC-LIKE (BIM), and characterize their role as networked positive regulators of SAS hypocotyl responses. We provide genetic evidence that these bHLH transcriptional regulators not only control plant growth and development under shade and non-shade conditions, but are also redundant in the control of plant viability. Our results suggest that SAS responses are initiated as a consequence of a new balance of transcriptional regulators within the pre-existing bHLH network triggered by plant proximity, eventually causing hypocotyls to elongate.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Hipocótilo/fisiología , Proteínas Nucleares/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Plantones/metabolismo
17.
J Exp Bot ; 65(11): 2937-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24609653

RESUMEN

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation. Here, we describe how plant proximity perception rapidly and temporally alters the levels of not only auxins but also active brassinosteroids and gibberellins. At the same time, shade alters the seedling sensitivity to hormones. Plant proximity perception also involves dramatic changes in gene expression that rapidly result in a new balance between positive and negative factors in a network of interacting basic helix-loop-helix proteins, such as HFR1, PAR1, and BIM and BEE factors. Here, it was shown that several of these factors act as auxin- and BR-responsiveness modulators, which ultimately control the intensity or degree of hypocotyl elongation. It was deduced that, as a consequence of the plant proximity-dependent new, dynamic, and local balance between hormone synthesis and sensitivity (mechanistically resulting from a restructured network of SAS regulators), SAS responses are unleashed and hypocotyls elongate.


Asunto(s)
Arabidopsis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Hipocótilo/efectos de los fármacos , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología
18.
Plant Cell ; 23(4): 1337-51, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21478445

RESUMEN

The period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy. In this article, we establish that unlike PIFs, which mainly promote hypocotyl elongation, SPT is a potent regulator of cotyledon expansion. Here, SPT acts in an analogous manner to the gibberellin-dependent DELLAs, REPRESSOR OF GA1-3 and GIBBERELLIC ACID INSENSITIVE, which restrain cotyledon expansion alongside SPT. However, although DELLAs are not required for SPT action, we demonstrate that SPT is subject to negative regulation by DELLAs. Cross-regulation of SPT by DELLAs ensures that SPT protein levels are limited when DELLAs are abundant but rise following DELLA depletion. This regulation provides a means to prevent excessive growth suppression that would result from the dual activity of SPT and DELLAs, yet maintain growth restraint under DELLA-depleted conditions. We present evidence that SPT and DELLAs regulate common gene targets and illustrate that the balance of SPT and DELLA action depends on light quality signals in the natural environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Represoras/metabolismo , Plantones/crecimiento & desarrollo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cotiledón/efectos de los fármacos , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Giberelinas/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Fitocromo B/metabolismo , Proteínas Represoras/genética , Plantones/efectos de los fármacos , Plantones/genética , Plantones/efectos de la radiación
19.
Plant J ; 72(1): 31-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22578006

RESUMEN

Unlike the situation in animals, the final morphology of the plant body is highly modulated by the environment. During Arabidopsis development, intrinsic factors provide the framework for basic patterning processes. CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) transcription factors are involved in embryo, shoot and root patterning. During vegetative growth HD-ZIPIII proteins control several polarity set-up processes such as in leaves and the vascular system. We have identified several direct target genes of the HD-ZIPIII transcription factor REVOLUTA (REV) using a chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) approach. This analysis revealed that REV acts upstream of auxin biosynthesis and affects directly the expression of several class II HD-ZIP transcription factors that have been shown to act in the shade-avoidance response pathway. We show that, as well as involvement in basic patterning, HD-ZIPIII transcription factors have a critical role in the control of the elongation growth that is induced when plants experience shade. Leaf polarity is established by the opposed actions of HD-ZIPIII and KANADI transcription factors. Finally, our study reveals that the module that consists of HD-ZIPIII/KANADI transcription factors controls shade growth antagonistically and that this antagonism is manifested in the opposed regulation of shared target genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Tipificación del Cuerpo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Adaptación Fisiológica , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Homeodominio/metabolismo , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Hibridación in Situ , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Luz , Mutación , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Análisis de Secuencia de ADN , Transducción de Señal , Factores de Transcripción/metabolismo
20.
Plant J ; 66(2): 258-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205034

RESUMEN

The shade avoidance syndrome (SAS) refers to a set of plant responses aimed at anticipating eventual shading by potential competitors. The SAS is initiated after perception of nearby vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. Low R:FR light is perceived by the phytochromes, triggering dramatic changes in gene expression that, in seedlings, eventually result in an increased hypocotyl elongation to overgrow competitors. This response is inhibited by genes such as PHYTOCHROME RAPIDLY REGULATED 1 (PAR1), PAR2 and LONG HYPOCOTYL IN FR 1 (HFR1), which are transcriptionally induced by low R:FR. Although PAR1/PAR2 and HFR1 proteins belong to different groups of basic helix-loop-helix (bHLH) transcriptional regulators, they all lack a typical basic domain required for binding to E-box and G-box motifs in the promoter of target genes. By overexpressing derivatives of PAR1 and HFR1 we show that these proteins are actually transcriptional cofactors that do not need to bind DNA to directly regulate transcription. We conclude that protein-protein interactions involving the HLH domain of PAR1 and HFR1 are a fundamental aspect of the mechanism by which these proteins regulate gene expression, most likely through interaction with true transcription factors that do bind to the target genes and eventually unleash the observed SAS responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/efectos de la radiación , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Transcripción Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA