Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602250

RESUMEN

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Asunto(s)
Beta vulgaris , Membrana Celular , Glucosa , Proteínas de Plantas , Raíces de Plantas , Protones , Sacarosa , Beta vulgaris/genética , Beta vulgaris/metabolismo , Sacarosa/metabolismo , Glucosa/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Xenopus laevis , Animales , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Oocitos/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35210362

RESUMEN

Voltage-gated ion channels confer excitability to biological membranes, initiating and propagating electrical signals across large distances on short timescales. Membrane excitation requires channels that respond to changes in electric field and couple the transmembrane voltage to gating of a central pore. To address the mechanism of this process in a voltage-gated ion channel, we determined structures of the plant two-pore channel 1 at different stages along its activation coordinate. These high-resolution structures of activation intermediates, when compared with the resting-state structure, portray a mechanism in which the voltage-sensing domain undergoes dilation and in-membrane plane rotation about the gating charge-bearing helix, followed by charge translocation across the charge transfer seal. These structures, in concert with patch-clamp electrophysiology, show that residues in the pore mouth sense inhibitory Ca2+ and are allosterically coupled to the voltage sensor. These conformational changes provide insight into the mechanism of voltage-sensor domain activation in which activation occurs vectorially over a series of elementary steps.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales Iónicos/metabolismo , Proteínas de Arabidopsis/química , Calcio/metabolismo , Microscopía por Crioelectrón , Activación del Canal Iónico , Ligandos , Conformación Proteica
3.
New Phytol ; 239(6): 2225-2234, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37434346

RESUMEN

Plant transpiration is controlled by stomata, with S- and R-type anion channels playing key roles in guard cell action. Arabidopsis mutants lacking the ALMT12/QUAC1 R-type anion channel function in guard cells show only a partial reduction in R-type channel currents. The molecular nature of these remaining R-type anion currents is still unclear. To further elucidate this, patch clamp, transcript and gas-exchange measurements were performed with wild-type (WT) and different almt mutant plants. The R-type current fraction in the almt12 mutant exhibited the same voltage dependence, susceptibility to ATP block and lacked a chloride permeability as the WT. Therefore, we asked whether the R-type anion currents in the ALMT12/QUAC1-free mutant are caused by additional ALMT isoforms. In WT guard cells, ALMT12, ALMT13 and ALMT14 transcripts were detected, whereas only ALMT13 was found expressed in the almt12 mutant. Substantial R-type anion currents still remained active in the almt12/13 and almt12/14 double mutants as well as the almt12/13/14 triple mutant. In good agreement, CO2 -triggered stomatal closure required the activity of ALMT12 but not ALMT13 or ALMT14. The results suggest that, with the exception of ALMT12, channel species other than ALMTs carry the guard cell R-type anion currents.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Estomas de Plantas/fisiología , Arabidopsis/genética , Aniones , Ácido Abscísico
4.
New Phytol ; 237(1): 217-231, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36128659

RESUMEN

Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.


Asunto(s)
Calcio , Nicotiana , Calcio/metabolismo , Nicotiana/metabolismo , Cloruro de Sodio/farmacología , Raíces de Plantas/metabolismo , Hojas de la Planta/fisiología , Sodio/metabolismo , Iones/metabolismo
5.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29938800

RESUMEN

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Nicotiana/enzimología , Salinidad , Cloruro de Sodio/farmacología , Vacuolas/enzimología , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentración de Iones de Hidrógeno , Isoenzimas/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/enzimología , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Bombas de Protones/metabolismo , Protones , Estrés Fisiológico/efectos de los fármacos , Nicotiana/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo
6.
New Phytol ; 216(4): 1161-1169, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28885692

RESUMEN

Unknown mechanisms tightly regulate the basal activity of the wound-inducible defence mediator jasmonate (JA) in undamaged tissues. However, the Arabidopsis fatty acid oxygenation upregulated2 (fou2) mutant in vacuolar two-pore channel 1 (TPC1D454N ) displays high JA pathway activity in undamaged leaves. This mutant was used to explore mechanisms controlling basal JA pathway regulation. fou2 was re-mutated to generate novel 'ouf' suppressor mutants. Patch-clamping was used to examine TPC1 cation channel characteristics in the ouf suppressor mutants and in fou2. Calcium (Ca2+ ) imaging was used to study the effects fou2 on cytosolic Ca2+ concentrations. Six intragenic ouf suppressors with near wild-type (WT) JA pathway activity were recovered and one mutant, ouf8, affected the channel pore. At low luminal calcium concentrations, ouf8 had little detectable effect on fou2. However, increased vacuolar Ca2+ concentrations caused channel occlusion, selectively blocking K+ fluxes towards the cytoplasm. Cytosolic Ca2+ concentrations in unwounded fou2 were found to be lower than in the unwounded WT, but they increased in a similar manner in both genotypes following wounding. Basal JA pathway activity can be controlled solely by manipulating endomembrane cation flux capacities. We suggest that changes in endomembrane potential affect JA pathway activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Cationes/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Citosol/metabolismo
7.
Plant J ; 74(3): 372-82, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23452338

RESUMEN

Under drought stress, the stress hormone ABA addresses the SnR kinase OST1 via its cytosolic receptor and the protein phosphatase ABI1. Upon activation, OST1 phosphorylates the guard cell S-type anion channel SLAC1. Arabidopsis ABI1 and OST1 loss-of-function mutants are characterized by an extreme wilting 'open stomata' phenotype. Given the fact that guard cells express both SLAC- and R-/QUAC-type anion channels, we questioned whether OST1, besides SLAC1, also controls the QUAC1 channel. In other words, are ABI1/OST1 defects preventing both of the guard cell anion channel types from operating properly in terms of stomatal closure? The activation of the R-/QUAC-type anion channel by ABA signaling kinase OST1 and phosphatase ABI1 was analyzed in two experimental systems: Arabidopsis guard cells and the plant cell-free background of Xenopus oocytes. Patch-clamp studies on guard cells show that ABA activates R-/QUAC-type currents of wild-type plants, but to a much lesser extent in those of abi1-1 and ost1-2 mutants. In the oocyte system the co-expression of QUAC1 and OST1 resulted in a pronounced activation of the R-type anion channel. These studies indicate that OST1 is addressing both S-/SLAC- and R-/QUAC-type guard cell anion channels, and explain why the ost1-2 mutant is much more sensitive to drought than single slac1 or quac1 mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de la Membrana/metabolismo , Células Vegetales/metabolismo , Estomas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Ácido Abscísico/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Proteínas de la Membrana/genética , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Células Vegetales/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Protoplastos/metabolismo , Transducción de Señal , Xenopus laevis/metabolismo
8.
New Phytol ; 202(1): 188-197, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24329902

RESUMEN

Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Germinación , Glucosa/metabolismo , Proteínas de Plantas/metabolismo , Protones , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris , Biocatálisis , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Conductividad Eléctrica , Congelación , Regulación de la Expresión Génica de las Plantas , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Transducción de Señal , Almidón/metabolismo , Vacuolas/metabolismo
9.
J Biol Chem ; 287(12): 8986-93, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22215665

RESUMEN

Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citosol/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Citosol/enzimología , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Protones , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/química , Vacuolas/genética , Vacuolas/metabolismo
10.
Biochem J ; 448(2): 243-51, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22943363

RESUMEN

ATP-hydrolysis and proton pumping by the V-ATPase (vacuolar proton-translocating ATPase) are subject to redox regulation in mammals, yeast and plants. Oxidative inhibition of the V-ATPase is ascribed to disulfide-bond formation between conserved cysteine residues at the catalytic site of subunit A. Subunits containing amino acid substitutions of one of three conserved cysteine residues of VHA-A were expressed in a vha-A null mutant background in Arabidopsis. In vitro activity measurements revealed a complete absence of oxidative inhibition in the transgenic line expressing VHA-A C256S, confirming that Cys(256) is necessary for redox regulation. In contrast, oxidative inhibition was unaffected in plants expressing VHA-A C279S and VHA-A C535S, indicating that disulfide bridges involving these cysteine residues are not essential for oxidative inhibition. In vivo data suggest that oxidative inhibition might not represent a general regulatory mechanism in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia Conservada , Cisteína/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Técnicas de Placa-Clamp , Plantas Modificadas Genéticamente , Conformación Proteica , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
11.
Proc Natl Acad Sci U S A ; 107(7): 3251-6, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133698

RESUMEN

The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H(+)-ATPase (V-ATPase) and the vacuolar H(+)-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn(2+)/H(+)-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na(+)/H(+)-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.


Asunto(s)
Arabidopsis/enzimología , Pirofosfatasa Inorgánica/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Arabidopsis/crecimiento & desarrollo , Colorimetría , Concentración de Iones de Hidrógeno , Mutación/genética , Nitratos/metabolismo , Técnicas de Placa-Clamp , Sodio/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/enzimología , Zinc/toxicidad
12.
Trends Plant Sci ; 28(6): 673-684, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740491

RESUMEN

Across phyla, voltage-gated ion channels (VGICs) allow excitability. The vacuolar two-pore channel AtTPC1 from the tiny mustard plant Arabidopsis thaliana has emerged as a paradigm for deciphering the role of voltage and calcium signals in membrane excitation. Among the numerous experimentally determined structures of VGICs, AtTPC1 was the first to be revealed in a closed and resting state, fueling speculation about structural rearrangements during channel activation. Two independent reports on the structure of a partially opened AtTPC1 channel protein have led to working models that offer promising insights into the molecular switches associated with the gating process. We review new structure-function models and also discuss the evolutionary impact of two-pore channels (TPCs) on K+ homeostasis and vacuolar excitability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/química , Canales de Calcio/metabolismo , Vacuolas/metabolismo
13.
Elife ; 122023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991833

RESUMEN

To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca2+. In our search for species-dependent functional TPC1 channel variants with different luminal Ca2+ sensitivity, we found in total three acidic residues present in Ca2+ sensor sites 2 and 3 of the Ca2+-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca2+. When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca2+ sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca2+ sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.


Asunto(s)
Arabidopsis , Vicia faba , Vacuolas , Arabidopsis/genética , Potenciales de Acción , Ecosistema
14.
Plant J ; 68(4): 670-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21781196

RESUMEN

Stomatal closure is known to be associated with early defence responses of plant cells triggered by microbe-associated molecular patterns (MAMPs). However, the molecular mechanisms underlying these guard-cell responses have not yet been elucidated. We therefore studied pathogen-induced changes in ion channel activity in Hordeum vulgare guard cells. Barley mildew (Blumeria graminis) hyphae growing on leaves inhibited light-induced stomatal opening, starting at 9 h after inoculation, when appressoria had developed. Alternatively, stomatal closure was induced by nano-infusion of chitosan via open stomata into the sub-stomatal cavity. Experiments using intracellular double-barreled micro-electrodes revealed that mildew stimulated S-type (slow) anion channels in guard cells. These channels enable the efflux of anions from guard cells and also promote K(+) extrusion by altering the plasma membrane potential. Stimulation of S-type anion channels was also provoked by nano-infusion of chitosan. These data suggest that MAMPs of mildew hyphae penetrating the cuticle provoke activation of S-type anion channels in guard cells. In response, guard cells extrude K(+) salts, resulting in stomatal closure. Plasma membrane anion channels probably represent general targets of MAMP signaling in plants, as these elicitors depolarize the plasma membrane of various cell types.


Asunto(s)
Ascomicetos/fisiología , Quitosano/metabolismo , Hordeum/microbiología , Activación del Canal Iónico , Estomas de Plantas/microbiología , Hordeum/metabolismo , Interacciones Huésped-Patógeno , Hifa/fisiología , Canales Iónicos/metabolismo , Potenciales de la Membrana , Enfermedades de las Plantas/microbiología , Estomas de Plantas/metabolismo , Potasio/metabolismo
15.
Plant J ; 68(1): 129-36, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21668536

RESUMEN

The vacuolar membrane is involved in solute uptake into and release from the vacuole, which is the largest plant organelle. In addition to inorganic ions and metabolites, large quantities of protons and sugars are shuttled across this membrane. Current models suggest that the proton gradient across the membrane drives the accumulation and/or release of sugars. Recent studies have associated AtSUC4 with the vacuolar membrane. Some members of the SUC family are plasma membrane proton/sucrose symporters. In addition, the sugar transporters TMT1 and TMT2, which are localized to the vacuolar membrane, have been suggested to function in proton-driven glucose antiport. Here we used the patch-clamp technique to monitor carrier-mediated sucrose transport by AtSUC4 and AtTMTs in intact Arabidopsis thaliana mesophyll vacuoles. In the whole-vacuole configuration with wild-type material, cytosolic sucrose-induced proton currents were associated with a proton/sucrose antiport mechanism. To identify the related transporter on one hand, and to enable the recording of symporter-mediated currents on the other hand, we electrophysiologically characterized vacuolar proteins recognized by Arabidopsis mutants of partially impaired sugar compartmentation. To our surprise, the intrinsic sucrose/proton antiporter activity was greatly reduced when vacuoles were isolated from plants lacking the monosaccharide transporter AtTMT1/TMT2. Transient expression of AtSUC4 in this mutant background resulted in proton/sucrose symport activity. From these studies, we conclude that, in the natural environment within the Arabidopsis cell, AtSUC4 most likely catalyses proton-coupled sucrose export from the vacuole. However, TMT1/2 probably represents a proton-coupled antiporter capable of high-capacity loading of glucose and sucrose into the vacuole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Vacuolas/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosa/metabolismo , Transporte Iónico/fisiología , Proteínas de Transporte de Membrana/genética , Células del Mesófilo/metabolismo , Células del Mesófilo/fisiología , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutagénesis Insercional , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Protones , Protoplastos , Proteínas Recombinantes de Fusión , Simportadores/genética , Simportadores/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(50): 21425-30, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19955405

RESUMEN

In response to drought stress the phytohormone ABA (abscisic acid) induces stomatal closure and, therein, activates guard cell anion channels in a calcium-dependent as well as-independent manner. Two key components of the ABA signaling pathway are the protein kinase OST1 (open stomata 1) and the protein phosphatase ABI1 (ABA insensitive 1). The recently identified guard cell anion channel SLAC1 appeared to be the key ion channel in this signaling pathway but remained electrically silent when expressed heterologously. Using split YFP assays, we identified OST1 as an interaction partner of SLAC1 and ABI1. Upon coexpression of SLAC1 with OST1 in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Integration of ABI1 into the SLAC1/OST1 complex, however, prevented SLAC1 activation. Our studies demonstrate that SLAC1 represents the slow, deactivating, weak voltage-dependent anion channel of guard cells controlled by phosphorylation/dephosphorylation.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Canales Iónicos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Sequías , Proteínas de la Membrana , Fosforilación , Unión Proteica
17.
Plant J ; 63(6): 1054-62, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626656

RESUMEN

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO2 -induced stomatal closure, as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and K(+) efflux via SLAC1 and GORK, respectively.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Electrofisiología , Transportadores de Anión Orgánico/genética , Estomas de Plantas/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
18.
Plant Cell Physiol ; 52(8): 1365-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21690176

RESUMEN

The stomatal complex of Zea mays is composed of two pore-forming guard cells and two adjacent subsidiary cells. For stomatal movement, potassium ions and anions are thought to shuttle between these two cell types. As potential cation transport pathways, K(+)-selective channels have already been identified and characterized in subsidiary cells and guard cells. However, so far the nature and regulation of anion channels in these cell types have remained unclear. In order to bridge this gap, we performed patch-clamp experiments with subsidiary cell and guard cell protoplasts. Voltage-independent anion channels were identified in both cell types which, surprisingly, exhibited different, cell-type specific dependencies on cytosolic Ca(2+) and pH. After impaling subsidiary cells of intact maize plants with microelectrodes and loading with BCECF [(2',7'-bis-(2-carboxyethyl)-5(and6)carboxyflurescein] as a fluorescent pH indicator, the regulation of ion channels by the cytosolic pH and the membrane voltage was further examined. Stomatal closure was found to be accompanied by an initial hyperpolarization and cytosolic acidification of subsidiary cells, while opposite responses were observed during stomatal opening. Our findings suggest that specific changes in membrane potential and cytosolic pH are likely to play a role in determining the direction and capacity of ion transport in subsidiary cells.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/fisiología , Zea mays/citología , Zea mays/fisiología , Ácido Abscísico/farmacología , Aniones , Calcio/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Citosol/efectos de la radiación , Concentración de Iones de Hidrógeno/efectos de los fármacos , Luz , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de la radiación , Especificidad de Órganos/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/ultraestructura , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Protoplastos/efectos de la radiación , Zea mays/efectos de los fármacos , Zea mays/ultraestructura
19.
Plant Physiol ; 154(2): 665-77, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20709831

RESUMEN

The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyll(ab)-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO(2) release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Proteínas de Transporte de Monosacáridos/metabolismo , Semillas/crecimiento & desarrollo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética , Mutación , Técnicas de Placa-Clamp , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo
20.
Plant J ; 58(5): 715-23, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19298454

RESUMEN

The SV channel encoded by the TPC1 gene represents a Ca(2+)- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca(2+)-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca(2+) before SV channel activity vanishes and K(+) homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Potenciales de la Membrana , Técnicas de Placa-Clamp , Mutación Puntual , Potasio/metabolismo , Vacuolas/metabolismo , Vacuolas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA