Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407626, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837637

RESUMEN

Poly-[n]-catenanes (PCs) self-assembled of three-dimensional (3D) metal organic cages (MOCs) (hereafter referred to as PCs-MOCs) are a relatively new class of mechanically interlocked molecules (MIMs) that combine the properties of MOCs and polymers. The synthesis of PCs-MOCs is challenging because of the difficulties associated with interlocking MOCs, the occurrence of multiple weak supramolecular electrostatic interactions between cages, and the importance of solvent templating effects. The high density of mechanical bonds interlocking the MOCs endows the MOCs with mechanical and physical properties such as enhanced stability, responsive dynamic behavior and low solubility, which can unlock new functional properties. In this Minireview, we highlight the benefit of interlocking MOCs in the formation of PCs-MOCs structures as well as the synthetic approaches exploited in their preparation, from thermodynamic to kinetic methods, both in the solution and solid-states. Examples of PCs-MOCs self-assembled from various types of nanosized cages (i.e., tetrahedral, trigonal prismatic, octahedral and icosahedral) are described in this article, providing an overview of the research carried out in this area. The focus is on the structure-property relationship with examples of functional applications such as electron conductivity, X-ray attenuation, gas adsorption and molecular sensing. We believe that the structural and functional aspects of the reviewed PCs-MOCs will attract chemists in this research field with great potential as new functional materials in nanotechnological disciplines such as gas adsorption, sensing and photophysical properties such as X-ray attenuation or electron conductivity.

2.
Chemistry ; 29(57): e202302025, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37459420

RESUMEN

In general, due to the lack of efficient specific molecular interactions, achieving host-guest molecular recognition inside large and neutral metal-organic cages (MOCs) is challenging. Preferential molecular recognition of aromatics using the internal binding sites of interlocked icosahedral (i. e., spherical) M12 L8 MOCs within poly-[n]-catenane (1) is reported. The guest absorption was monitored directly in the solid-state by consecutive single-crystal-to-single-crystal (SCSC) reactions in a gas-solid environment, in single-crystal X-ray diffraction (SC-XRD) experiments. The preferential guest uptake was corroborated by density functional theory (DFT) calculations by determining the host-guest interaction energy (Ehost-guest ) with a nitrobenzene (NB)≫p-xylene (p-xy)≫o-dichlorobenzene (o-DCB) trend (i. e., from 44 to 25 kcal mol-1 ), assessing the XRD outcomes. Combining SC-XRD, DFT and solid-state 13 C NMR, the exceptional stability of the M12 L8 cages, together with the guest exchange/release properties were rationalized by considering the presence of mechanical bonds (efficient π-π interactions) and by the pyridine's rotor-like behaviour (with 3 kcal mol-1 rotational energy barrier). The structure-function properties of M12 L8 makes 1 a potential candidate in the field of molecular sensors.

3.
J Org Chem ; 88(22): 15790-15804, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37932902

RESUMEN

A collection of peptidomimetics characterized by having an aspartic acid motif embedded in a rigid hydantoin heterocycle are synthesized through a sequential multicomponent domino process followed by standard regioselective deprotection/coupling reactions based on acid-base liquid/liquid purification protocols. 1H nuclear magnetic resonance experiments, molecular modeling, and X-ray analysis showed that the resulting hydantoin-based loops I (in particular) and II (to a lesser extent) can be considered novel ß-turn inducer motifs being able to project two peptide-like strands in a U-shaped conformation driven by the formation of intermolecular hydrogen bonds.

4.
Inorg Chem ; 61(28): 10863-10871, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35771236

RESUMEN

Despite their potential applications in host-guest chemistry, there are only five reported structures of poly-[n]-catenanes self-assembled by elusive M12L8 icosahedral nanocages. This small number of structures of M12L8 poly-[n]-catenanes is because self-assembly of large metal-organic cages (MOCs) with large windows allowing catenation by means of mechanical bonds is very challenging. Structural reports of M12L8 poly-[n]-catenanes are needed to increase our knowledge about the self-assembly and genesis of such materials. Poly-[n]-catenane (1·p-CT) self-assembly of interlocked M12L8 icosahedral cages (M = Zn(II) and L = 2,4,6-tris-(4-pyridyl)benzene (TPB)) including a new aromatic guest (p-chlorotoluene (p-CT)) is reported by single-crystal XRD. Despite the huge internal M12L8 voids (> 2500 Å3), p-CT is ordered, allowing a clear visualization of the relative host-guest positions. DFT calculations have been used to compute the electrostatic potential of the TPB ligand, and various aromatic guests (i.e., o-dichlorobenzene (o-DCB), p-chloroanisole (p-CA), and nitrobenzene (NBz)) included (ordered) within the M12L8 cages were determined by single-crystal XRD. The computed maps of electrostatic potential (MEPs) allow for the rationalization of the guest's inclusion seen in the 3D X-ray structures. Although more crystallographic X-ray structures and DFT analysis are needed to gain insights of guest inclusion in the large voids of M12L8 poly-[n]-catenanes, the reported combined experimental/DFT structural analyses approach can be exploited to use isostructural M12L8 poly-[n]-catenanes as hosts for molecular separation and could find applications in the crystalline sponge method developed by Fujita and co-workers. We also demonstrate, exploiting the instant synthesis method, in solution (i.e., o-DCB), and in the solid-state by neat grinding (i.e., without solvent), that the isostructural M12L8 poly-[n]-catenane self-assembled with 2,4,6-tris-(4-pyridyl)pyridine (TPP) ligand and ZnX2 (where X = Cl, Br, and I) can be kinetically synthesized as crystalline (yields ≈ 60%) and amorphous phases (yields ≈ 70%) in short time and large quantities. Despite the change in the aromatic nature at the center of the rigid exo-tridentate pyridine-based ligand (TPP vs TPB), the kinetic control gives the poly-[n]-catenanes selectively. The dynamic behavior of the TPP amorphous phases upon the uptake of aromatic guest molecules can be used in molecular separation applications like benzene derivatives.

5.
J Am Chem Soc ; 142(20): 9537-9543, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32343571

RESUMEN

Kinetic control in the presence of six aromatic solvents has been successfully applied in the synthesis of a poly-[n]-catenane composed of interlocked M12L8 icosahedral nanometric cages (i.e., internal voids of 2500 Å3). When the exotridentate tris-pyridyl benzene ligand and ZnCl2 with appropriate templating molecules because of good ligand aromatic interactions are used, the metal-organic cages can be synthesized very fast, homogeneously, and in large quantities as microcrystalline materials. Synchrotron single-crystal X-ray data (100 K) allowed the resolution of nitrobenzene guest molecules at the internal walls of the M12L8 nanocages, whereas in the central part of the cages the solvent is highly disordered. The guest release occurs in two steps with the disordered nitrobenzene guests released in the first step (lower temperatures) because of the absence of strong cage-guest interactions. Density functional theory calculations provided a rationalization of these outcomes and, in particular, solid-state approaches, showed theoretical evidence of the kinetic nature in the formation of the poly-[n]-catenane by the analysis of the packing energy in terms of monomeric and dimeric cages.

6.
Inorg Chem ; 58(21): 14871-14875, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31617713

RESUMEN

Diuranyl bis(salophen) complex 1 features a relatively slow conformational motion, induced by an intramolecular O═U═O···UO2 binding motif, which interconverts the two nonsymmetric halves of the ligand. This flipping motion, which constitutes one of the fundamental molecular motions, can be completely halted by addition of fluoride anion, which is bound to 1, reaching one of the highest affinities reported to date. This system represents a model to study flipping dynamics in light of the possibility of developing novel types of molecular machines based on it.

7.
Anal Chem ; 90(18): 10771-10779, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30113822

RESUMEN

Recent studies have shown that modern pigments produced after the Second Industrial Revolution are complex systems characterized by a high level of heterogeneities. Therefore, it is fundamental to adopt a multianalytical approach and highly sensitive methods to characterize the impurities present within pigments. In this work we propose time-resolved and spectrally resolved photoluminescence (PL) microscopy for the mapping of luminescent crystal defects and impurities in historical cadmium-based pigments. PL analysis is complemented by X-ray diffraction, X-ray fluorescence and Raman spectroscopies, and by scanning electron microscopy to determine the chemical composition and crystal structure of samples. The study highlights the heterogeneous and complex nature of historical samples that can be associated with the imperfect manufacturing processes tested during the period between the 1850s and 1950s. The results also allow us to speculate on a range of synthesis processes. Since it is recognized that the stability of paints can be related to pigments synthesis, this research paves the way to a wider study on the relationship between synthesis methods and deterioration of cadmium pigments and paints. This rapid and immediate approach using PL can be applied to other semiconductor pigments and real case studies.

8.
Chemistry ; 24(72): 19368-19372, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30325090

RESUMEN

Ligands L1 and L2 have been designed, synthesized, and used to build for the first time bispidine-based coordination polymers (CPs) in combination with MnII . The novel CPs have been structurally characterized by single-crystal (SC) and powder X-ray diffraction (P-XRD) techniques, showing that they are composed of 1D ribbon-like chains that adopt various arrangements depending on the trapped solvent species. These materials show highly dynamic behavior as they undergo heterogeneous solid/liquid and solid/vapor multiple solvent exchange processes, comprising crystalline-amorphous-crystalline, selective adsorption and SC-to-SC transformations, where major structural reorganization of the 1D ribbons are observed. By tuning inter-ribbon interactions through expansion of the ligand's accessible surface, the dynamic behavior can be effectively modulated.

9.
Inorg Chem ; 56(11): 6584-6590, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28525269

RESUMEN

Gas-solid chemisorption of HCl and adsorption of MeOH/EtOH by nonporous chiral copper(II) coordination complexes 1·MeOH and 1″·MeOH occur in a cooperative and dynamic manner to give solvated second sphere adducts 1'·MeOH/EtOH. The chemisorption process involves dramatic atomic rearrangements in the crystalline state upon cleavage and formation of H-Cl, N-H, Cu-N, and Cu-Cl coordination and covalent bonds from the gas and solid state, respectively. Using mechanochemistry, the chloride-bridged coordination complex 1″·MeOH is selectively produced by means of a dehydrochlorination reaction, but not in solution in which a mixture of 1·MeOH and 1″·MeOH is obtained. 1″·MeOH also via chemisorption and adsorption can trap HCl and MeOH to give the second sphere adduct 1'·MeOH. The adsorption process is confirmed by forming the second sphere adduct 1'·EtOH by exposing both 1·MeOH and 1″·MeOH to HCl and ethanol. Quantum-mechanical (QM) calculations specific for solid phases give insights into the relative stabilities of the hybrid metal organic materials involved in the mechanochemical reaction producing selectively 1″·MeOH, giving a good agreement with the experimental results.

10.
Inorg Chem ; 55(5): 2009-17, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26645835

RESUMEN

The synthesis and structural characterization of azahelicene platinum complexes obtained from cis-PtCl2(NCEt)(PPh3) and from ligands that differ in terms of both the position of the nitrogen atom and the number of fused rings are reported. These square-planar complexes of the general formula PtCl2(nHm)(PPh3) (n = 4, 5; m = 5, 6) display mainly a cis configuration. However, by X-ray crystallographic analysis, we show that for both PtCl2(4H6)(PPh3) and PtCl2(5H6)(PPh3) there is chirality control of the cis/trans stereochemistry. Indeed, starting from a racemic mixture of aza[6]helicene, platinum complexes with a cis configuration are invariably obtained, and the more thermodynamically stable trans isomers are formed when using enantiopure ligands. We further corroborated these results by NMR analysis in solution.

11.
Acc Chem Res ; 46(2): 493-505, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23252592

RESUMEN

Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.

12.
Inorg Chem ; 53(14): 7438-45, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24959700

RESUMEN

We have applied crystal engineering as a tool to study the solid-state transformation from molecular salts to coordination complexes via mechanochemical dehydrochlorination reactions. The -(CH2)n- (n = 2, 3) alkyl chains were introduced into the bibenzylamine moiety to form the two nitrogen bases N,N,N',N'-tetrabenzylethylenediamine (L(1)) and N,N,N',N'-tetrabenzylpropydiamine (L(2)), which were self-assembled with tetrachlorometalates to form a series of supramolecular salts through second-sphere coordination. Single crystals of salts [L(1)]2H(+)·[CuCl4](2-)·solvent (1) and [L(2)]2H(+)·[XCl4](2-)·solvent (2-4; X = Cu, Hg, Zn) were obtained and their structures determined by single-crystal X-ray diffraction. The effect of different alkyl chains (two and three -CH2- units) on the solid-state reactivity showed that the chelating complexes resulting from the mechanochemical dehydrohalogenation reaction depend on the formation of quasi-chelating hydrogen-bonding salts. Quantum-mechanical calculations have been used to gain insight in this mechanochemical dehydrohalogenation reaction, demonstrating that not only is size matching between reactants is important but also conformational energies, intermolecular interactions, and the symmetry of frontier molecular orbitals play an important role.

13.
Chempluschem ; : e202400332, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855862

RESUMEN

The solid-state synthesis and fast crystallization under kinetic control of poly-[n]-catenanes self-assembled of mechanically interlocked metal organic cages (MOCs) is virtually unexplored. This is in part, due to the lack of suitable crystals for single crystal X-ray diffraction (SC-XRD) analysis which limits their progress as advanced functional materials. Here we report the unprecedented inclusion of paracetamol in the cavities of amorphous materials constituted of M12L8, interlocked MOCs synthesized by mechanochemistry under kinetic control. Full structure determination of a low-crystallinity and low-resolution powders of the M12L8 poly-[n]-catenane including paracetamol has been carried out combining XRD data and Density Functional Theory (DFT) calculations using a multi-step approach. Each M12L8 cage contains six paracetamol guests which is confirmed by thermal analysis and NMR spectroscopy. The paracetamol loading has been also carried out by the instant synthesis method using a saturated paracetamol solution in which TPB and ZnI2 self-assemble immediately (i. e., 1-5 seconds) encapsulating ~7 paracetamol molecules in the M12L8 nanocages under kinetic control also giving a good selectivity. Benzaldehyde has been included in the M12L8 cages using amorphous M12L8 polycatenanes showing that the icosahedral cages can serve as potential nanoreactors for instance to study Henry reactions in the solid-state.

14.
Sci Rep ; 13(1): 5605, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019947

RESUMEN

Here, we show that in a supramolecular system with more than 20 building blocks forming large icosahedral M12L8 metal-organic cages (MOCs), using the instant synthesis method, it is possible to kinetically trap and control the formation of interlocking M12L8 nanocages, giving rare M12L8 TPB-ZnI2 poly-[n]-catenane. The catenanes are obtained in a one-pot reaction, selectively as amorphous (a1) or crystalline states, as demonstrated by powder X-ray diffraction (powder XRD), thermogravimetric (TG) analysis and 1H NMR. The 300 K M12L8 poly-[n]-catenane single crystal X-ray diffraction (SC-XRD) structure including nitrobenzene (1) indicates strong guest binding with the large M12L8 cage (i.e., internal volume ca. 2600 Å3), allowing its structural resolution. Conversely, slow self-assembly (5 days) leads to a mixture of the M12L8 poly-[n]-catenane and a new TPB-ZnI2 (2) coordination polymer (i.e., thermodynamic product), as revealed by SC-XRD. The neat grinding solid-state synthesis also yields amorphous M12L8 poly-[n]-catenane (a1'), but not coordination polymers, selectively in 15 min. The dynamic behavior of the M12L8 poly-[n]-catenanes demonstrated by the amorphous-to-crystalline transformation upon the uptake of ortho-, meta- and para-xylenes shows the potential of M12L8 poly-[n]-catenanes as functional materials in molecular separation. Finally, combining SC-XRD of 1 and DFT calculations specific for the solid-state, the role of the guests in the stability of the 1D chains of M12L8 nanocages is reported. Energy interactions such as interaction energies (E), lattice energies (E*), host-guest energies (Ehost-guest) and guest-guest energies (Eguest-guest) were analysed considering the X-ray structure with and without the nitrobenzene guest. Not only the synthetic control achieved in the synthesis of the M12L8 MOCs but also their dynamic behavior either in the crystalline or amorphous phase are sufficient to raise scientific interest in areas ranging from fundamental to applied sides of chemistry and material sciences.

15.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614411

RESUMEN

Interest towards cellulose nanofibers obtained from virgin and waste sources has seen a significant growth, mainly thanks to the increasing sensitivity towards the concept of circular economy and the high levels of paper recycling achieved in recent years. Inspired by the guidelines of the green building industry, this study proposes the production and characterization of TEMPO-oxidized and homogenized cellulose nanofibers (TOHO CNF) from different sources and their use as additives for earth plasters on two different raw earth samples, characterized by geotechnical laboratory tests and mineralogical analysis: a high-plasticity clay (T2) and a medium-compressibility silt (ABS). Original sources, including those derived from waste (recycled cardboard and paper mill sludge), were characterized by determining chemical content (cellulose versus ashes and lignin) and fiber morphology. TOHO CNF derived from the different sources were compared in terms of nanofibers medium diameter, crystallinity degree, thermal decomposition and oxidation degree, that is the content of carboxylic groups per gram of sample. Then, a preliminary analysis of the influence of CNF on earth plasters is examined. Adhesion and capillary absorption tests highlighted the effect of such nanofibers on blends in function of two factors, namely the cellulose original source and the oxidation degree of the fibers. In particular, for both earth samples, T2 and ABS, a significant increase in adhesion strength was observed in the presence of some TOHO CNF additives. As far as capillary sorption tests, while an undesired increase in water adsorption was detected for T2 compared to the control, in the case of ABS, a significant reduction in water content was measured by adding TOHO CNF derived from recycled sources. These results pave the way for further in-depth investigation on the role of TOHO CNF as additives for earth plasters.

16.
Dalton Trans ; 50(34): 11665-11680, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34323900

RESUMEN

The latest advances of solid-state dehydrohalogenation and halogenation reactions of hydrogen bonded halometallate salts from the second sphere coordination perspective are reported. Since the second sphere englobes many different materials, our focus has been limited to outer sphere adducts where protonated organic cations act as outer sphere hydrogen bond donors and transition metal anions act as first sphere hydrogen bond acceptors. This is our attempt to analyze dehydrohalogenation/hydrohalogenation reactions viewed as transformations from the second sphere coordination to first sphere coordination of a complex and vice versa. The examples describe a unique solid-state chemistry and reactivity in outer sphere adducts where C-H, N-H and M-X chemical bonds are cleaved and new M-N and H-X bonds are formed (where M = Cu, Zn, Co, Pt, Pd, Hg and X = Cl, Br). The transformations are induced by external stimuli, mainly by mechanochemical and thermal methods. Different reactivities have been observed depending on the lability of the transition metals, the position of the reacting functional groups in the cations and the relative position of organic cations and metal anions. The reverse hydrohalogenation reactions (i.e., from the first sphere coordination to second sphere coordination) via the gas-solid chemisorption process occur even if the materials are non-porous implying a rather dynamic behaviour of these materials. Moreover, due to the implicit changes in the coordination sphere of transition metal ions, dehydrohalogenation/halogenation reactions allow structure-function correlation to be established, for instance involving optical, sensing and magnetic aspects.

17.
Dalton Trans ; 51(1): 53-58, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34889335

RESUMEN

Using mechanochemistry by grinding TPB and ZnBr2, an amorphous poly-[n]-catenane of interlocked M12L8 nanocages is obtained in good yields (∼80%) and within 15 minutes. The mechanical bond among the icosahedral M12L8 cages in the amorphous phase has been demonstrated by single crystal XRD, powder XRD and FT-IR spectroscopy following an amorphous-to-crystalline transformation by guest uptake of the amorphous phase. High-resolution solid-state 13C NMR spectroscopy gives insights into the local structure of the amorphous catenane focusing on TPB aromatic-aromatic interactions.

18.
Dalton Trans ; 49(40): 13897-13916, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33047745

RESUMEN

Metal organic frameworks (MOFs), also known as coordination polymers/networks, have experienced a rapid upsurge in the last 20 years in part due to the precise visualization of their atomic arrangement in the solid state. Structure-function relationship properties in MOFs is a key step to understand the potential of a material for its applications in advanced technologies, which can be only understood if full structure determination is carried out. Single crystal X-ray diffraction is the most reliable technique for the 3D description of the atomic arrangement of a crystalline material, but it needs a suitable single crystal both in size and in quality. Sadly, it often occurs that it is not possible to grow crystals of enough quality for single crystal XRD analysis. In MOF synthesis, rather often the products of certain synthetic approaches such as fast crystallization or mechanochemical reactions are obtained as powders. Also, gas, temperature, and solvent induced reactions render single crystals unsuitable for single crystal XRD. In such cases, structure elucidation of MOFs must be carried out using ab initio powder XRD analysis. Unfortunately, structure solution from powder XRD data is more complicated than that from single crystal XRD data. In this article, a short overview of crystal structure solution from powder XRD and how this technique has been applied in the structure solution of MOFs using direct-space strategy is given. Examples of microcrystalline MOFs obtained by solvothermal methods, synthesized by instant synthesis and mechanochemical methods and products obtained after solid-state reactivity are highlighted. The reported cases are challenging structure solution examples carried out by direct-space strategy using powder XRD data, and show that ab initio powder XRD structure solution is a powerful technique that allows many chemical reactions whose products cannot be carried out by single crystal X-ray analysis to be understood. Hopefully, the strength of ab initio powder XRD structure elucidation with the few cases shown in this Perspective will encourage members of this field of research to exploit this technique to make further progress in MOF chemistry.

19.
Dalton Trans ; 49(38): 13420-13429, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32966469

RESUMEN

Here we report novel bispidine-based coordination polymers (CPs) 2·TCM, 3·TCM, 3·NB, 5·TCM and 5·TCM·NB, of compostition [Mn(Cl)2(L2)2·(TCM)2], [Mn(Cl)2(L3)2·(TCM)5], [Mn(Cl)2(L3)2·(NB)8], [Mn(Cl)2(L5)2·(TCM)4], [Mn(Cl)2(L5)2·(TCM)2·(NB)2], respectively (NB = nitrobenzene; TCM = chloroform). They were obtained starting from novel bispidine ligands L2 (dimethyl 7-isopropyl-3-methyl-9-oxo-2,4-di(pyridin-4-yl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate), L3 (dimethyl 7-(cyclohexylmethyl)-3-methyl-9-oxo-2,4-di(pyridin-4-yl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate) and L5 (dimethyl 7-(4-(dimethylamino)benzyl)-3-methyl-9-oxo-2,4-di(pyridin-4-yl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate), The novel CPs were characterized by single crystal X-ray diffraction (SC-XRD), powder X-ray diffraction (PXRD) and thermal analyses (TGA). We describe their structural and dynamic properties in terms of solvent exchange and adsorption processes, and we outline the general trends observed on the basis of a total of 16 X-ray structures (4 new) and 21 microcrystalline powder phases (10 new), which have been obtained so far for CPs by coordination of ligands L1-L5, having different substitution at the N7 position. This large set of CPs comprises monosolvated, bisolvated and desolvated species, and it shows a good demonstration of how small differences in the functionalization of the organic ligand can have a strong impact on the resulting structural and dynamic properties of this class of 1D CPs.

20.
RSC Adv ; 10(33): 19629-19635, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35515445

RESUMEN

The conformational isomerism of the chelating agent 2,6-bis(1-(3-hydroxypropyl)-1,2,3-triazol-4-yl)pyridine (PTD), exploited in fuel reprocessing in spent nuclear waste, has been studied by single crystal X-ray diffraction analysis in combination with an extensive DFT conformational investigation. In the solid-state, the elucidated crystal structure (i.e., not yet published) shows that by thermal treatment (DSC) no other phases are observed upon crystallization from the melt, indicating that the conformation observed by X-ray data is rather stable. Mapping of intermolecular and intramolecular noncovalent interactions has been used to elucidate the unusual arrangement of the asymmetric unit. Considerations relating to the stability of different conformational isomers in aqueous and non-aqueous solutions are also presented. The accurate structural description reported here might open various research topics such as the potential of PTD to act as an outer sphere ligand in the formation of second sphere coordination complexes and their interconversion by mechanochemical means.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA