Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990463

RESUMEN

To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed the spatial and temporal histories of adaptive alleles underlying major phenotypic axes of diversification from the genomes of 202 Caribbean pupfishes. On a single Bahamian island, ancient standing variation from disjunct geographic sources was reassembled into new combinations under strong directional selection for adaptation to the novel trophic niches of scale-eating and molluscivory. We found evidence for two longstanding hypotheses of adaptive radiation: hybrid swarm origins and temporal stages of adaptation. Using a combination of population genomics, transcriptomics, and genome-wide association mapping, we demonstrate that this microendemic adaptive radiation of novel trophic specialists on San Salvador Island, Bahamas experienced twice as much adaptive introgression as generalist populations on neighboring islands and that adaptive divergence occurred in stages. First, standing regulatory variation in genes associated with feeding behavior (prlh, cfap20, and rmi1) were swept to fixation by selection, then standing regulatory variation in genes associated with craniofacial and muscular development (itga5, ext1, cyp26b1, and galr2) and finally the only de novo nonsynonymous substitution in an osteogenic transcription factor and oncogene (twist1) swept to fixation most recently. Our results demonstrate how ancient alleles maintained in distinct environmental refugia can be assembled into new adaptive combinations and provide a framework for reconstructing the spatiotemporal landscape of adaptation and speciation.


Asunto(s)
Adaptación Fisiológica/genética , Especiación Genética , Peces Killi/genética , Filogenia , Análisis Espacio-Temporal , Vertebrados/genética , Animales , Bahamas , Región del Caribe , Proteínas de Peces/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Geografía , Peces Killi/anatomía & histología , Peces Killi/clasificación , Polimorfismo de Nucleótido Simple , Vertebrados/anatomía & histología , Vertebrados/clasificación
3.
Proc Biol Sci ; 290(2009): 20231686, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876194

RESUMEN

Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.


Asunto(s)
Peces Killi , Animales , Peces Killi/genética , Receptor de Galanina Tipo 2/genética , Bahamas , Fenotipo
4.
Mol Biol Evol ; 38(2): 405-423, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32877534

RESUMEN

Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists-a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species-only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Peces Killi/genética , Cráneo/crecimiento & desarrollo , Animales , Femenino , Peces Killi/crecimiento & desarrollo , Peces Killi/metabolismo , Masculino , Especificidad de la Especie , Transcriptoma
5.
Proc Biol Sci ; 289(1975): 20220613, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611537

RESUMEN

Adaptive radiations involve astounding bursts of phenotypic, ecological and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of an intermediate C. sp. 'wide-mouth' scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes, illuminating the transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct and often consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in trophic specialists to characterize their adaptive walk. Shared adaptive regions swept first in both the specialist desquamator and the intermediate 'wide-mouth' ecomorph, followed by unique sweeps of introgressed variation in 'wide-mouth' and de novo variation in desquamator. The two scale-eating populations additionally shared 9% of their hard selective sweeps with the molluscivore C. brontotheroides, despite no single common ancestor among specialists. Our work provides a new microevolutionary framework for investigating how major ecological transitions occur and illustrates how both shared and unique genetic variation can provide a bridge for multiple species to access novel ecological niches.


Asunto(s)
Especiación Genética , Peces Killi , Animales , Ecosistema , Peces Killi/genética , Simpatría
6.
Proc Biol Sci ; 289(1986): 20221561, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36321496

RESUMEN

Small populations with limited range are often threatened by inbreeding and reduced genetic diversity, which can reduce fitness and exacerbate population decline. One of the most extreme natural examples is the Devils Hole pupfish (Cyprinodon diabolis), an iconic and critically endangered species with the smallest known range of any vertebrate. This species has experienced severe declines in population size over the last 30 years and suffered major bottlenecks in 2007 and 2013, when the population shrunk to 38 and 35 individuals, respectively. Here, we analysed 30 resequenced genomes of desert pupfishes from Death Valley, Ash Meadows and surrounding areas to examine the genomic consequences of small population size. We found extremely high levels of inbreeding (FROH = 0.34-0.81) and an increased amount of potentially deleterious genetic variation in the Devils Hole pupfish as compared to other species, including unique, fixed loss-of-function alleles and deletions in genes associated with sperm motility and hypoxia. Additionally, we successfully resequenced a formalin-fixed museum specimen from 1980 and found that the population was already highly inbred prior to recent known bottlenecks. We thus document severe inbreeding and increased mutation load in the Devils Hole pupfish and identify candidate deleterious variants to inform management of this conservation icon.


Asunto(s)
Endogamia , Peces Killi , Masculino , Humanos , Animales , Motilidad Espermática , Especies en Peligro de Extinción , Mutación , Variación Genética
7.
J Exp Biol ; 225(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35647659

RESUMEN

Understanding how organismal traits determine performance and, ultimately, fitness is a fundamental goal of evolutionary eco-morphology. However, multiple traits can interact in non-linear and context-dependent ways to affect performance, hindering efforts to place natural populations with respect to performance peaks or valleys. Here, we used an established mechanistic model of suction-feeding performance (SIFF) derived from hydrodynamic principles to estimate a theoretical performance landscape for zooplankton prey capture. This performance space can be used to predict prey capture performance for any combination of six morphological and kinematic trait values. We then mapped in situ high-speed video observations of suction feeding in a natural population of a coral reef zooplanktivore, Chromis viridis, onto the performance space to estimate the population's location with respect to the topography of the performance landscape. Although the kinematics of the natural population closely matched regions of high performance in the landscape, the population was not located on a performance peak. Individuals were furthest from performance peaks on the peak gape, ram speed and mouth opening speed trait axes. Moreover, we found that the trait combinations in the observed population were associated with higher performance than expected by chance, suggesting that these combinations are under selection. Our results provide a framework for assessing whether natural populations occupy performance optima.


Asunto(s)
Perciformes , Conducta Predatoria , Animales , Fenómenos Biomecánicos , Conducta Alimentaria , Succión
8.
Ecol Freshw Fish ; 31(4): 675-692, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36211622

RESUMEN

Trophic niche partitioning is observed in many adaptive radiations and is hypothesized to be a central process underlying species divergence. However, patterns of dietary niche partitioning are inconsistent across radiations and there are few studies of niche partitioning in putative examples of sympatric speciation. Here, we conducted the first quantitative study of dietary niche partitioning using stomach contents and stable isotope analyses in one of the most celebrated examples of sympatric speciation: the cichlid radiation from crater lake Barombi Mbo, Cameroon. We found little evidence for trophic niche partitioning among cichlids, including the nine species coexisting in the narrow littoral zone. Stable isotope analyses supported these conclusions of substantial dietary overlap. Our data, however, did reveal that five of eleven species consume rare dietary items, including freshwater sponge, terrestrial ants, and nocturnal foraging on shrimp. Stomach contents of the spongivore (Pungu maclareni) were 20% freshwater sponge, notable considering that only 0.04% of all fishes consume sponges. Overall, we conclude that cichlid species in lake Barombi Mbo overlap considerably in broad dietary niches-in part due to the large proportion of detritus in the stomach contents of all species-but there is evidence for divergence among species in their diet specializations on unique resources. We speculate that these species may utilize these additional specialized resources during periods of low resource abundance in support of Liem's paradox.

9.
Bioessays ; 41(7): e1900047, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31245871

RESUMEN

Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.


Asunto(s)
Cíclidos/genética , Flujo Génico/genética , Especiación Genética , Simpatría/genética , Animales
10.
Proc Biol Sci ; 287(1938): 20201903, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171080

RESUMEN

Herbivorous fishes form a keystone component of reef ecosystems, yet the functional mechanisms underlying their feeding performance are poorly understood. In water, gravity is counter-balanced by buoyancy, hence fish are recoiled backwards after every bite they take from the substrate. To overcome this recoil and maintain contact with the algae covered substrate, fish need to generate thrust while feeding. However, the locomotory performance of reef herbivores in the context of feeding has hitherto been ignored. We used a three-dimensional high-speed video system to track mouth and body kinematics during in situ feeding strikes of fishes in the genus Zebrasoma, while synchronously recording the forces exerted on the substrate. These herbivores committed stereotypic and coordinated body and fin movements when feeding off the substrate and these movements determined algal biomass removed. Specifically, the speed of rapidly backing away from the substrate was associated with the magnitude of the pull force and the biomass of algae removed from the substrate per feeding bout. Our new framework for measuring biting performance in situ demonstrates that coordinated movements of the body and fins play a crucial role in herbivore foraging performance and may explain major axes of body and fin shape diversification across reef herbivore guilds.


Asunto(s)
Aletas de Animales/fisiología , Peces , Herbivoria , Animales , Arrecifes de Coral
11.
Annu Rev Ecol Evol Syst ; 50(1): 569-593, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36237480

RESUMEN

Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes - species richness, phenotypic disparity, and ecological diversity - with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the 'transporter' hypothesis: introgression and the ancient origins of adaptive alleles, 2) the 'signal complexity' hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) 'diversity begets diversity', and 5) flexible stem/'plasticity first'. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation.

12.
Mol Ecol ; 29(14): 2707-2721, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32557903

RESUMEN

Ecological speciation occurs when reproductive isolation evolves as a byproduct of adaptive divergence between populations. Selection favouring gene regulatory divergence between species could result in transgressive levels of gene expression in F1 hybrids that may lower hybrid fitness. We combined 58 resequenced genomes with 124 transcriptomes to identify patterns of hybrid gene misexpression that may be driven by adaptive regulatory divergence within a young radiation of Cyprinodon pupfishes, which consists of a dietary generalist and two trophic specialists-a molluscivore and a scale-eater. We found more differential gene expression between closely related sympatric specialists than between allopatric generalist populations separated by 1,000 km. Intriguingly, 9.6% of genes that were differentially expressed between sympatric species were also misexpressed in F1 hybrids. A subset of these genes were in highly differentiated genomic regions and enriched for functions important for trophic specialization, including head, muscle and brain development. These regions also included genes that showed evidence of hard selective sweeps and were significantly associated with oral jaw length-the most rapidly diversifying skeletal trait in this radiation. Our results indicate that divergent ecological selection in sympatry can contribute to hybrid gene misexpression which may act as a reproductive barrier between nascent species.


Asunto(s)
Aptitud Genética , Hibridación Genética , Peces Killi , Simpatría , Animales , Expresión Génica , Especiación Genética , Genoma , Peces Killi/genética , Aislamiento Reproductivo
13.
J Exp Biol ; 223(Pt 6)2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32029459

RESUMEN

The origins of novel trophic specialization, in which organisms begin to exploit resources for the first time, may be explained by shifts in behavior such as foraging preferences or feeding kinematics. One way to investigate behavioral mechanisms underlying ecological novelty is by comparing prey capture kinematics among species. We investigated the contribution of kinematics to the origins of a novel ecological niche for scale-eating within a microendemic adaptive radiation of pupfishes on San Salvador Island, Bahamas. We compared prey capture kinematics across three species of pupfish while they consumed shrimp and scales in the lab, and found that scale-eating pupfish exhibited peak gape sizes twice as large as in other species, but also attacked prey with a more obtuse angle between their lower jaw and suspensorium. We then investigated how this variation in feeding kinematics could explain scale-biting performance by measuring bite size (surface area removed) from standardized gelatin cubes. We found that a combination of larger peak gape and more obtuse lower jaw and suspensorium angles resulted in approximately 40% more surface area removed per strike, indicating that scale-eaters may reside on a performance optimum for scale biting. To test whether feeding performance could contribute to reproductive isolation between species, we also measured F1 hybrids and found that their kinematics and performance more closely resembled generalists, suggesting that F1 hybrids may have low fitness in the scale-eating niche. Ultimately, our results suggest that the evolution of strike kinematics in this radiation is an adaptation to the novel niche of scale eating.


Asunto(s)
Peces Killi , Animales , Bahamas , Fenómenos Biomecánicos , Ecosistema , Conducta Alimentaria , Islas , Conducta Predatoria
14.
PLoS Genet ; 13(8): e1006919, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28796803

RESUMEN

Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity.


Asunto(s)
Adaptación Fisiológica/genética , Especiación Genética , Peces Killi/genética , Filogenia , Animales , Evolución Biológica , Ecosistema , Flujo Génico , Variación Genética , Genoma , Simpatría , Indias Occidentales
15.
J Fish Biol ; 97(1): 163-171, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32278332

RESUMEN

Dietary specialization on hard prey items, such as mollusks and crustaceans, is commonly observed in a diverse array of fish species. Many fish consume these types of prey by crushing the shell to consume the soft tissue within, but a few fishes extricate the soft tissue without breaking the shell using a method known as oral shelling. Oral shelling involves pulling a mollusc from its shell and it may be a way to subvert an otherwise insurmountable shell defence. However, the biomechanical requirements and potential adaptations for oral shelling are unknown. Here, we test the hypothesis that a novel nasal protrusion is an adaptation for oral shelling in the durophagous pupfish (Cyprinodon brontotheroides). We first demonstrate oral shelling in this species and then predict that a larger nasal protrusion would allow pupfish to consume larger snails. Durophagous pupfish are found within an endemic radiation of pupfish on San Salvador Island, Bahamas. We took advantage of closely related sympatric species and outgroups to test: (a) whether durophagous pupfish shell and consume more snails than other species, (b) if F1 and F2 durophagous hybrids consume similar amounts of snails as purebred durophagous pupfish, and (c) if nasal protrusion size in parental and hybrid populations increases the maximum size of consumed snails. We found that durophagous pupfish and their hybrids consumed the most snails, but did not find a strong association between nasal protrusion size and maximum snail size consumed within the parental or F2 hybrid population, suggesting that the size of their novel nasal protrusion does not provide a major benefit in oral shelling. Instead, we suggest that the nasal protrusion may increase feeding efficiency, act as a sensory organ, or is a sexually selected trait, and that a strong feeding preference may be most important for oral shelling.


Asunto(s)
Adaptación Fisiológica , Distribución Animal , Conducta Alimentaria/fisiología , Peces Killi/anatomía & histología , Peces Killi/fisiología , Animales , Bahamas , Simpatría
16.
Am Nat ; 193(2): 309-317, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30720364

RESUMEN

Botanical carnivory is a novel feeding strategy associated with numerous physiological and morphological adaptations. However, the benefits of these novel carnivorous traits are rarely tested. We used field observations, lab experiments, and a seminatural experiment to test prey capture function of the marginal spikes on snap traps of the Venus flytrap (Dionaea muscipula). Our field and laboratory results suggested inefficient capture success: fewer than one in four prey encounters led to prey capture. Removing the marginal spikes decreased the rate of prey capture success for moderate-sized cricket prey by 90%, but this effect disappeared for larger prey. The nonlinear benefit of spikes suggests that they provide a better cage for capturing more abundant insects of moderate and small sizes, but they may also provide a foothold for rare large prey to escape. Our observations support Darwin's hypothesis that the marginal spikes form a "horrid prison" that increases prey capture success for moderate-sized prey, but the decreasing benefit for larger prey is unexpected and previously undocumented. Thus, we find surprising complexity in the adaptive landscape for one of the most wonderful evolutionary innovations among all plants. These findings enrich understanding of the evolution and diversification of novel trap morphology in carnivorous plants.


Asunto(s)
Droseraceae/fisiología , Animales , Tamaño Corporal , Droseraceae/anatomía & histología , Gryllidae
17.
Mol Biol Evol ; 34(4): 873-888, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28028132

RESUMEN

The genetic changes responsible for evolutionary transitions from generalist to specialist phenotypes are poorly understood. Here we examine the genetic basis of craniofacial traits enabling novel trophic specialization in a sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist species and two novel specialists: a small-jawed "snail-eater" and a large-jawed "scale-eater." We genotyped 12 million single nucleotide polymorphisms (SNPs) by whole-genome resequencing of 37 individuals of all three species from nine populations and integrated genome-wide divergence scans with association mapping to identify divergent regions containing putatively causal SNPs affecting jaw size-the most rapidly diversifying trait in this radiation. A mere 22 fixed variants accompanied extreme ecological divergence between generalist and scale-eater species. We identified 31 regions (20 kb) containing variants fixed between specialists that were significantly associated with variation in jaw size which contained 11 genes annotated for skeletal system effects and 18 novel candidate genes never previously associated with craniofacial phenotypes. Six of these 31 regions showed robust signs of hard selective sweeps after accounting for demographic history. Our data are consistent with predictions based on quantitative genetic models of adaptation, suggesting that the effect sizes of regions influencing jaw phenotypes are positively correlated with distance between fitness peaks on a complex adaptive landscape.


Asunto(s)
Especiación Genética , Maxilares/fisiología , Peces Killi/genética , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Región del Caribe , Secuencia Conservada/genética , Ecosistema , Evolución Molecular , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/veterinaria , Aptitud Genética/genética , Genética de Población/métodos , Genoma/genética , Genotipo , Maxilares/anatomía & histología , Peces Killi/anatomía & histología , Peces Killi/metabolismo , Mandíbula/anatomía & histología , Mandíbula/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Relación Estructura-Actividad , Simpatría/genética
18.
Mol Ecol ; 27(4): 831-838, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29148600

RESUMEN

Saglam et al. recently argued that the Devil's Hole pupfish (Cyprinodon diabolis), a conservation icon with the smallest known species range, was isolated 60 kya based on a new genomic data set. If true, this would be a radically long timescale for any species to persist at population sizes <500 individuals, in contrast to conservation genetics theory. However, here we argue that their analyses and interpretation are inappropriate. They placed highly restrictive prior distributions on divergence times, which do not appropriately model the large uncertainty and result in removing nearly all uncertainty from their analyses, and chose among models by assuming that pupfishes exhibit human mutation rates. We reanalysed their data with their same methods, only using an informative prior for the plausible range of mutation rates observed across vertebrates, including an estimate of the genomewide mutation rate from a pedigree analysis of cichlid fishes. In fact, Saglam et al.'s phylogenetic data support much younger median divergence times for C. diabolis, ranging from 6.2 to 19.9 kya, overlapping with our previous phylogenetic divergence time estimates of 2.5-6.5 kya. There are many reasons to suspect an even younger age and higher mutation rate in C. diabolis, as we previously estimated, due to their high metabolism, small adult size, small population size and severe environmental stressors. In conclusion, our results highlight the need for measuring mutation rate in this fascinating species and suggest that the ages of endangered taxa present in small, isolated populations may frequently be overestimated.


Asunto(s)
Tasa de Mutación , Filogenia , Animales , Genómica , Humanos , Peces Killi
19.
Mol Ecol ; 27(21): 4270-4288, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29972877

RESUMEN

The process of sympatric speciation in nature remains a fundamental unsolved problem. Cameroon crater lake cichlid radiations were long regarded as one of the most compelling examples; however, recent work showed that their origins were more complex than a single colonization event followed by isolation. Here, we performed a detailed investigation of the speciation history of a radiation of Coptodon cichlids from Lake Ejagham, Cameroon, using whole-genome sequencing data. The existence of the Lake Ejagham Coptodon radiation is remarkable as this 0.5 km2 lake offers limited scope for divergence across a shallow depth gradient, disruptive selection is currently weak, and the species are sexually monochromatic. We infer that Lake Ejagham was colonized by Coptodon cichlids soon after its formation 9,000 years ago, yet speciation occurred only in the last 1,000-2,000 years. We show that secondary gene flow from a nearby riverine species has been ongoing, into ancestral as well as extant lineages, and we identify and date river-to-lake admixture blocks. One block contains a cluster of olfactory receptor genes that introgressed near the time of the first speciation event and coincides with a higher overall rate of admixture. Olfactory signalling is a key component of mate choice and species recognition in cichlids. A functional role for this introgression event is consistent with previous findings that sexual isolation appears much stronger than ecological isolation in Ejagham Coptodon. We conclude that speciation in this radiation took place in sympatry, yet may have benefited from ongoing riverine gene flow.


Asunto(s)
Cíclidos/clasificación , Flujo Génico , Especiación Genética , Genética de Población , Receptores Odorantes/genética , Simpatría , Animales , Camerún , Cíclidos/genética , Lagos , Filogenia
20.
J Anat ; 232(2): 173-185, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29161774

RESUMEN

Dietary partitioning often accompanies the increased morphological diversity seen during adaptive radiations within aquatic systems. While such niche partitioning would be expected in older radiations, it is unclear how significant morphological divergence occurs within a shorter time period. Here we show how differential growth in key elements of the feeding mechanism can bring about pronounced functional differences among closely related species. An incredibly young adaptive radiation of three Cyprinodon species residing within hypersaline lakes in San Salvador Island, Bahamas, has recently been described. Characterized by distinct head shapes, gut content analyses revealed three discrete feeding modes in these species: basal detritivory as well as derived durophagy and lepidophagy (scale-feeding). We dissected, cleared and stained, and micro-CT scanned species to assess functionally relevant differences in craniofacial musculoskeletal elements. The widespread feeding mode previously described for cyprinodontiforms, in which the force of the bite may be secondary to the requisite dexterity needed to pick at food items, is modified within both the scale specialist and the durophagous species. While the scale specialist has greatly emphasized maxillary retraction, using it to overcome the poor mechanical advantage associated with scale-eating, the durophage has instead stabilized the maxilla. In all species the bulk of the adductor musculature is composed of AM A1. However, the combined masses of both adductor mandibulae (AM) A1 and A3 in the scale specialist were five times that of the other species, showing the importance of growth in functional divergence. The scale specialist combines plesiomorphic jaw mechanisms with both a hypertrophied AM A1 and a slightly modified maxillary anatomy (with substantial functional implications) to generate a bite that is both strong and allows a wide range of motion in the upper jaw, two attributes that normally tradeoff mechanically. Thus, a significant feeding innovation (scale-eating, rarely seen in fishes) may evolve based largely on allometric changes in ancestral structures. Alternatively, the durophage shows reduced growth with foreshortened jaws that are stabilized by an immobile maxilla. Overall, scale specialists showed the most divergent morphology, suggesting that selection for scale-biting might be stronger or act on a greater number of traits than selection for either detritivory or durophagy. The scale specialist has colonized an adaptive peak that few lineages have climbed. Thus, heterochronic changes in growth can quickly produce functionally relevant change among closely related species.


Asunto(s)
Evolución Biológica , Conducta Alimentaria , Maxilares/anatomía & histología , Peces Killi/anatomía & histología , Animales , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA