Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genes Dev ; 25(12): 1289-305, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21685364

RESUMEN

5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes.


Asunto(s)
Mitocondrias/metabolismo , Transporte de ARN/fisiología , ARN Ribosómico 5S/metabolismo , Proteínas Ribosómicas/metabolismo , Citosol/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Chaperonas Moleculares , Unión Proteica , Ribosomas/metabolismo , Tiosulfato Azufretransferasa/metabolismo
2.
Nucleic Acids Res ; 41(1): 418-33, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23087375

RESUMEN

Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases.


Asunto(s)
ADN Mitocondrial/biosíntesis , Síndrome de Kearns-Sayre/genética , Mitocondrias/metabolismo , Mutación , Oligorribonucleótidos/metabolismo , Adolescente , Replicación del ADN , ADN Mitocondrial/química , Vectores Genéticos/química , Humanos , Masculino , Oligorribonucleótidos/química , Transporte de ARN , Transfección
3.
Nucleic Acids Res ; 39(18): 8173-86, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21724600

RESUMEN

Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.


Asunto(s)
Genes Mitocondriales , Síndrome MELAS/genética , Mutación Puntual , ARN de Transferencia de Leucina/genética , Aminoacilación , Secuencia de Bases , Línea Celular , Respiración de la Célula , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Transporte de ARN , ARN de Transferencia de Leucina/química , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/metabolismo
4.
RNA ; 16(5): 926-41, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348443

RESUMEN

In the yeast Saccharomyces cerevisiae, nuclear DNA-encoded is partially imported into mitochondria. We previously found that the synthetic transcripts of yeast tRNA(Lys) and a number of their mutant versions could be specifically internalized by isolated yeast and human mitochondria. The mitochondrial targeting of tRNA(Lys) in yeast was shown to depend on the cytosolic precursor of mitochondrial lysyl-tRNA synthetase and the glycolytic enzyme enolase. Here we applied the approach of in vitro selection (SELEX) to broaden the spectrum of importable tRNA-derived molecules. We found that RNAs selected for their import into isolated yeast mitochondria have lost the potential to acquire a classical tRNA-shape. Analysis of conformational rearrangements in the importable RNAs by in-gel fluorescence resonance energy transfer (FRET) approach permitted us to suggest that protein factor binding and subsequent import require formation of an alternative structure, different from a classic L-form tRNA model. We show that in the complex with targeting protein factor, enolase 2, tRK1 adopts a particular conformation characterized by bringing together the 3'-end and the TPsiC loop. This is a first evidence for implication of RNA secondary structure rearrangement in the mechanism of mitochondrial import selectivity. Based on these data, a set of small RNA molecules with significantly improved efficiency of import into yeast and human mitochondria was constructed, opening the possibility of creating a new mitochondrial vector system able to target therapeutic oligoribonucleotides into deficient human mitochondria.


Asunto(s)
Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Mitocondrias/metabolismo , Aptámeros de Nucleótidos/química , Secuencia de Bases , Transporte Biológico Activo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Técnicas In Vitro , Lisina-ARNt Ligasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fosfopiruvato Hidratasa/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Técnica SELEX de Producción de Aptámeros , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico
5.
J Biol Chem ; 285(40): 30792-803, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20663881

RESUMEN

5 S rRNA is an essential component of ribosomes. In eukaryotic cells, it is distinguished by particularly complex intracellular traffic, including nuclear export and re-import. The finding that in mammalian cells 5 S rRNA can eventually escape its usual circuit toward nascent ribosomes to get imported into mitochondria has made the scheme more complex, and it has raised questions about both the mechanism of 5 S rRNA mitochondrial targeting and its function inside the organelle. Previously, we showed that import of 5 S rRNA into mitochondria requires unknown cytosolic proteins. Here, one of them was identified as mitochondrial thiosulfate sulfurtransferase, rhodanese. Rhodanese in its misfolded form was found to possess a strong and specific 5 S rRNA binding activity, exploiting sites found earlier to function as signals of 5 S rRNA mitochondrial localization. The interaction with 5 S rRNA occurs cotranslationally and results in formation of a stable complex in which rhodanese is preserved in a compact enzymatically inactive conformation. Human 5 S rRNA in a branched Mg(2+)-free form, upon its interaction with misfolded rhodanese, demonstrates characteristic functional traits of Hsp40 cochaperones implicated in mitochondrial precursor protein targeting, suggesting that it may use this mechanism to ensure its own mitochondrial localization. Finally, silencing of the rhodanese gene caused not only a proportional decrease of 5 S rRNA import but also a general inhibition of mitochondrial translation, indicating the functional importance of the imported 5 S rRNA inside the organelle.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Ribosómico 5S/metabolismo , Tiosulfato Azufretransferasa/metabolismo , Animales , Transporte Biológico/fisiología , Bovinos , Silenciador del Gen , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Células Hep G2 , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas/fisiología , ARN Ribosómico 5S/genética , Tiosulfato Azufretransferasa/genética
6.
RNA ; 14(4): 749-59, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18314502

RESUMEN

RNA import into mitochondria is a widespread phenomenon. Studied in details for yeast, protists, and plants, it still awaits thorough investigation for human cells, in which the nuclear DNA-encoded 5S rRNA is imported. Only the general requirements for this pathway have been described, whereas specific protein factors needed for 5S rRNA delivery into mitochondria and its structural determinants of import remain unknown. In this study, a systematic analysis of the possible role of human 5S rRNA structural elements in import was performed. Our experiments in vitro and in vivo show that two distinct regions of the human 5S rRNA molecule are needed for its mitochondrial targeting. One of them is located in the proximal part of the helix I and contains a conserved uncompensated G:U pair. The second and most important one is associated with the loop E-helix IV region with several noncanonical structural features. Destruction or even destabilization of these sites leads to a significant decrease of the 5S rRNA import efficiency. On the contrary, the beta-domain of the 5S rRNA was proven to be dispensable for import, and thus it can be deleted or substituted without affecting the 5S rRNA importability. This finding was used to demonstrate that the 5S rRNA can function as a vector for delivering heterologous RNA sequences into human mitochondria. 5S rRNA-based vectors containing a substitution of a part of the beta-domain by a foreign RNA sequence were shown to be much more efficiently imported in vivo than the wild-type 5S rRNA.


Asunto(s)
Mitocondrias/metabolismo , ARN Ribosómico 5S/química , ARN Ribosómico 5S/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Transporte Biológico Activo , Línea Celular , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN/química , ARN/genética , ARN/metabolismo , ARN Ribosómico 5S/genética , Transfección
7.
Biochim Biophys Acta ; 1757(9-10): 1217-28, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16962558

RESUMEN

In eucaryotes, glycolytic enzymes are classically regarded as being localised in the cytosol. Recently, we have shown that part of the cellular pool of the glycolytic enzyme, enolase, is tightly associated with the mitochondrial surface in the yeast Saccharomyces cerevisiae (N. Entelis, I. Brandina, P. Kamenski, I.A. Krasheninnikov, R.P. Martin and I. Tarassov, A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae, Genes Dev. 20 (2006) 1609-1620). Here, using enzymatic assays, we show that all glycolytic enzymes are associated with mitochondria in yeast, to extents similar to those previously reported for Arabidopsis cells. Using separation of mitochondrial complexes by blue-native/SDS-PAGE and coimmunoprecipitation of mitochondrial proteins with anti-enolase antibodies, we found that enolase takes part in a large macromolecular complex associated to mitochondria. The identified components included additional glycolytic enzymes, mitochondrial membrane carriers, and enzymes of the TCA cycle. We suggest a possible role of the enolase complex in the channeling of pyruvate, the terminal product of glycolysis, towards the TCA cycle within mitochondria. Moreover, we show that the mitochondrial enolase-containing complex also contains the cytosolic tRNA(CUU)Lys, which is mitochondrially-imported, and its presumed import carrier, the precursor of the mitochondrial lysyl-tRNA synthetase. This suggests an unsuspected novel function for this complex in tRNA mitochondrial import.


Asunto(s)
Mitocondrias/enzimología , Complejos Multiproteicos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Saccharomyces cerevisiae/enzimología , Electroforesis en Gel de Poliacrilamida , Precursores Enzimáticos/metabolismo , Glucólisis/fisiología , Inmunoprecipitación , Lisina-ARNt Ligasa/metabolismo , Fosfopiruvato Hidratasa/aislamiento & purificación , ARN de Transferencia de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
FEBS Lett ; 581(22): 4248-54, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17707817

RESUMEN

In Saccharomyces cerevisiae, one of two cytosolic lysine-tRNAs is partially imported into mitochondria. We demonstrate that three components of the ubiquitin/26S proteasome system (UPS), Rpn13p, Rpn8p and Doa1p interact with the imported tRNA and with the essential factor of its mitochondrial targeting, pre-Msk1p. Genetic and biochemical assays demonstrate that UPS plays a dual regulatory role, since the overall inhibition of cellular proteasome activity reduces tRNA import, while specific depletion of Rpn13p or Doa1p increases it. This result suggests a functional link between UPS and tRNA mitochondrial import in yeast and indicates on the existence of negative and positive import regulators.


Asunto(s)
Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de ARN , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Unión Proteica , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Methods Mol Biol ; 372: 235-53, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18314730

RESUMEN

Ribonucleic acid (RNA) import into mitochondria occurs in a variety of organisms. In mammalian cells, several small RNAs are imported in a natural manner; transfer RNAs (tRNAs) can be imported in an artificial way, following expression of corresponding genes from another organism (yeast) in the nucleus. We describe how to establish and to analyze such import mechanisms in cultured human cells. In detail, we describe (1) the construction of plasmids expressing importable yeast tRNA derivatives in human cells, (2) the procedure of transfection of either immortalized cybrid cell lines or primary patient's fibroblasts and downregulation of tRNA expression directed by small interfering RNA (siRNA) as a way to demonstrate the effect of import in vivo, (3) the methods of mitochondrial RNA isolation from the transfectants, and (4) approaches for quantification of RNA mitochondrial import.


Asunto(s)
Mitocondrias/metabolismo , Biología Molecular/métodos , Transporte de ARN , ARN de Transferencia/metabolismo , Secuencia de Bases , Northern Blotting , Precipitación Química , Células HeLa , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN/aislamiento & purificación , ARN Mitocondrial , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Transfección
10.
Mitochondrion ; 10(3): 284-93, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20064631

RESUMEN

Mitochondria of many species import of nuclear DNA-encoded tRNAs. This widely spread but poorly studied phenomenon proved to be a promising tool for mitochondrial transfection. In yeast Saccharomyces cerevisiae, one cytosolic tRNAs(Lys) is partially targeted into mitochondria. Previous studies have shown that binding of this tRNA to its putative protein carrier, the precursor of mitochondrial lysyl-tRNA synthetase (preMsk1p), IIb class aminoacyl-tRNA synthetase, was a pre-requisite of import. In this work, we identify the hinge region with two adjacent helices H5 and H7 to be responsible for mitochondrial targeting of the tRNA and characterize preMsk1p versions with altered tRK1 import capacities.


Asunto(s)
Proteínas Portadoras/metabolismo , Lisina-ARNt Ligasa/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , ARN de Transferencia de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Lisina-ARNt Ligasa/genética , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Precursores de Proteínas/genética , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Eliminación de Secuencia
12.
Mol Cell ; 26(5): 625-37, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17560369

RESUMEN

Although mitochondrial import of nuclear DNA-encoded RNAs is widely occurring, their functions in the organelles are not always understood. Mitochondrial function(s) of tRNA(Lys)(CUU), tRK1, targeted into Saccharomyces cerevisiae mitochondria was mysterious, since mitochondrial DNA-encoded tRNA(Lys)(UUU), tRK3, was hypothesized to decode both lysine codons, AAA and AAG. Mitochondrial targeting of tRK1 depends on the precursor of mitochondrial lysyl-tRNA synthetase, pre-Msk1p. Here we show that substitution of pre-Msk1p by its Ashbya gossypii ortholog results in a strain in which tRK3 is aminoacylated, while tRK1 is not imported. At elevated temperature, drop of tRK1 import inhibits mitochondrial translation of mRNAs containing AAG codons, which coincides with the impaired 2-thiolation of tRK3 anticodon wobble nucleotide. Restoration of tRK1 import cures the translational defect, suggesting the role of tRK1 in conditional adaptation of mitochondrial protein synthesis. In contrast with the known ways of organellar translation control, this mechanism exploits the RNA import pathway.


Asunto(s)
Mitocondrias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico Activo , Citosol/metabolismo , ADN de Hongos/genética , ADN Mitocondrial/genética , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Temperatura
13.
Cell Cycle ; 6(20): 2473-7, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17704646

RESUMEN

Targeting nuclear DNA-encoded tRNA into mitochondria is a quasi-ubiquitous process, found in a variety of species, although the mechanisms of this pathway seem to differ from one system to another. In all cases reported, this import concerns small non-coding RNAs and the vast majority of imported RNAs are transfer RNAs. If was commonly assumed that the main criterion to presume a tRNA to be imported is the absence of the corresponding gene in mitochondrial genome, in some cases the imported species seemed redundant in the organelle. By studying one of such "abnormal" situation in yeast S. cerevisiae, we discovered an original mechanism of conditional regulation of mitochondrial translation exploiting the RNA import pathway. Here, we provide an outline of the current state of RNA import in yeast and discuss the possible impact of the newly described mechanism of translational adaptation.


Asunto(s)
Núcleo Celular/genética , ADN/genética , Mitocondrias/genética , Biosíntesis de Proteínas/genética , ARN/genética , Transporte de Proteínas , ARN/química
14.
Genes Dev ; 20(12): 1609-20, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16738406

RESUMEN

In many organisms, mitochondria import nuclear DNA-encoded small RNAs. In yeast Saccharomyces cerevisiae, one out of two cytoplasmic isoacceptor tRNAs(Lys) is partially addressed into the organelle. Mitochondrial targeting of this tRNA was shown to depend on interaction with the precursor of mitochondrial lysyl-tRNA synthetase, preMsk1p. However, preMsk1p alone was unable to direct tRNA targeting, suggesting the existence of additional protein factor(s). Here, we identify the glycolytic enzyme, enolase, as such a factor. We demonstrate that recombinant enolase and preMSK1p are sufficient to direct tRNA import in vitro and that depletion of enolase inhibits tRNA import in vivo. Enzymatic and tRNA targeting functions of enolase appear to be independent. Three newly characterized properties of the enolase can be related to its novel function: (1) specific affinity to the imported tRNA, (2) the ability to facilitate formation of the complex between preMsk1p and the imported tRNA, and (3) partial targeting toward the mitochondrial outer membrane. We propose a model suggesting that the cell exploits mitochondrial targeting of the enolase in order to address the tRNA toward peri-mitochondrially synthesized preMsk1p. Our results indicate an alternative molecular chaperone function of glycolytic enzyme enolase in tRNA mitochondrial targeting.


Asunto(s)
Mitocondrias/enzimología , Mitocondrias/genética , Fosfopiruvato Hidratasa/metabolismo , Transporte de ARN , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Transporte de Catión/metabolismo , Compartimento Celular , Mitocondrias/metabolismo , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidad
15.
Hum Mol Genet ; 13(20): 2519-34, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15317755

RESUMEN

Mitochondrial DNA (mtDNA) mutations are an important cause of human disease for which there is no efficient treatment. Our aim was to determine whether the A8344G mitochondrial tRNA(Lys) mutation, which can cause the MERRF (myoclonic epilepsy with ragged-red fibers) syndrome, could be complemented by targeting tRNAs into mitochondria from the cytosol. Import of small RNAs into mitochondria has been demonstrated in many organisms, including protozoans, plants, fungi and animals. Although human mitochondria do not import tRNAs in vivo, we previously demonstrated that some yeast tRNA derivatives can be imported into isolated human mitochondria. We show here that yeast tRNALys derivatives expressed in immortalized human cells and in primary human fibroblasts are partially imported into mitochondria. Imported tRNAs are correctly aminoacylated and are able to participate in mitochondrial translation. In transmitochondrial cybrid cells and in patient-derived fibroblasts bearing the MERRF mutation, import of tRNALys is accompanied by a partial rescue of mitochondrial functions affected by the mutation such as mitochondrial translation, activity of respiratory complexes, electrochemical potential across the mitochondrial membrane and respiration rate. Import of a tRNALys with a mutation in the anticodon preventing recognition of the lysine codons does not lead to any rescue, whereas downregulation of the transgenic tRNAs by small interfering RNA (siRNA) transiently abolishes the functional rescue, showing that this rescue is due to the import. These findings prove for the first time the functionality of imported tRNAs in human mitochondria in vivo and highlight the potential for exploiting the RNA import pathway to treat patients with mtDNA diseases.


Asunto(s)
ADN Mitocondrial/genética , Síndrome MERRF/genética , Mitocondrias/metabolismo , Mutación/genética , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Anticodón/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , ADN/genética , Complejo IV de Transporte de Electrones/análisis , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Síndrome MERRF/metabolismo , Mitocondrias/química , Biosíntesis de Proteínas , Transporte de ARN , ARN Interferente Pequeño/genética , ARN de Transferencia de Lisina/análisis , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA