Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Cell ; 7(5): 763-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15525537

RESUMEN

Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis.


Asunto(s)
División Celular/fisiología , Mamíferos/fisiología , Proteínas RGS/fisiología , Huso Acromático/química , Cigoto/fisiología , Animales , Anticuerpos Monoclonales/metabolismo , Blastocisto/citología , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Eliminación de Gen , Vectores Genéticos , Células HeLa , Heterocigoto , Humanos , Hidrazinas , Ratones , Ratones Noqueados , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas RGS/genética , Proteínas RGS/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas
2.
Methods Enzymol ; 390: 240-58, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15488182

RESUMEN

Microtubules are dynamic polymers essential for mitosis and cell division, intracellular transport, and maintaining cell organization and structure. Microtubule dynamics are tightly controlled in a context-specific manner by a myriad of microtubule-associated proteins. We have identified regulator of G-protein signaling-14 (RGS14) as a microtubule-associated protein. RGS14 is a component of the mitotic apparatus that binds directly to and stabilizes microtubules in vitro and is essential for the first cell division in the mouse embryo. This article describes methods used for examining the impact of the RGS14/microtubule interaction in vivo and in vitro.


Asunto(s)
Microtúbulos/metabolismo , Proteínas RGS/metabolismo , Animales , Blastocisto/fisiología , Células Cultivadas , Humanos , Ratones , Proteínas RGS/genética , Proteínas RGS/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
Cell Cycle ; 4(7): 953-60, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15917656

RESUMEN

Heterotrimeric G-proteins and their regulators are emerging as important players in modulating microtubule polymerization dynamics and in spindle force generation during cell division in C. elegans, D. melanogaster and mammals. We recently demonstrated that RGS14 is required for completion of the first mitotic division of the mouse embryo, and that it regulates microtubule organization in vivo. Here, we demonstrate that RGS14 is a microtubule-associated protein and a component of the mitotic spindle that may regulate microtubule polymerization and spindle organization. Taxol-stabilized tubulin, but not depolymerized tubulin coimmunoprecipitates with RGS14 from cell extracts. Furthermore, RGS14 copurifies with tubulin from porcine brain following multiple rounds of microtubule polymerization/depolymerization and binds directly to microtubules formed in vitro from pure tubulin (KD = 1.3 +/- 0.3 microM). Both RGS14 and Galpha(i1) in the presence of exogenous GTP promote tubulin polymerization, which is dependent on additional microtubule-associated proteins. However, preincubation of RGS14 with Galpha(i1)-GDP precludes either from promoting microtubule polymerization, suggesting that a functional GTP/GDP cycle is necessary. Finally, we show that RGS14 is a component of mitotic asters formed in vitro from HeLa cell extracts and that depletion of RGS14 from cell extracts blocks aster formation. Collectively, these results show that RGS14 is a microtubule-associated protein that may modulate microtubule dynamics and spindle formation.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas RGS/metabolismo , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Queratinocitos/citología , Ratones , Microtúbulos/metabolismo , Mitosis/fisiología , Polímeros/química , Unión Proteica
4.
Dev Dyn ; 234(2): 438-44, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16145674

RESUMEN

Regulators of G-protein Signaling (RGS proteins) are a multigene family of GTPase-accelerating proteins for the Galpha subunit of heterotrimeric G-proteins. The mammalian R12 RGS protein subfamily is composed of RGS12 and RGS14, two proteins characterized by their multidomain architecture of hallmark RGS domain, tandem Ras-binding domains (RBDs), and a second Galpha interacting domain, the GoLoco motif. The Rgs12 gene generates multiple splice variants, the largest of which encodes N-terminal PDZ and PTB domains in addition to the core RGS/RBD/GoLoco motifs. The Rgs14 gene encodes a protein similar to the non-PDZ/PTB domain RGS12 splice variants. The spatiotemporal expression patterns of RGS12 and RGS14 proteins were examined by immunohistochemistry in a developmental series of postimplantation mouse embryo. We report that RGS12 splice variants exhibit differential spatiotemporal patterns of expression during postimplantation embryogenesis, suggesting nonoverlapping roles. In contrast, RGS14 is found ubiquitously throughout the postimplantation period. We conclude that R12 subfamily RGS proteins likely play significant and different roles in specific tissues and periods of mouse embryogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas RGS/fisiología , Empalme Alternativo , Secuencias de Aminoácidos , Animales , Immunoblotting , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Familia de Multigenes , Músculo Esquelético/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas RGS/biosíntesis , Proteínas RGS/metabolismo , Somitos/metabolismo , Factores de Tiempo , Distribución Tisular
5.
Plant Physiol ; 128(3): 812-21, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11891238

RESUMEN

Adenosine (Ado) kinase (ADK; ATP:Ado 5' phosphotransferase, EC 2.7.1.20) catalyzes the salvage synthesis of adenine monophosphate from Ado and ATP. In Arabidopsis, ADK is encoded by two cDNAs that share 89% nucleotide identity and are constitutively, yet differentially, expressed in leaves, stems, roots, and flowers. To investigate the role of ADK in plant metabolism, lines deficient in this enzyme activity have been created by sense and antisense expression of the ADK1 cDNA. The levels of ADK activity in these lines range from 7% to 70% of the activity found in wild-type Arabidopsis. Transgenic plants with 50% or more of the wild-type activity have a normal morphology. In contrast, plants with less than 10% ADK activity are small with rounded, wavy leaves and a compact, bushy appearance. Because of the lack of elongation of the primary shoot, the siliques extend in a cluster from the rosette. Fertility is decreased because the stamen filaments do not elongate normally; hypocotyl and root elongation are reduced also. The hydrolysis of S-adenosyl-L-homo-cysteine (SAH) produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions is a key source of Ado in plants. The lack of Ado salvage in the ADK-deficient lines leads to an increase in the SAH level and results in the inhibition of SAM-dependent transmethylation. There is a direct correlation between ADK activity and the level of methylesterified pectin in seed mucilage, as monitored by staining with ruthenium red, immunofluorescence labeling, or direct assay. These results indicate that Ado must be steadily removed by ADK to prevent feedback inhibition of SAH hydrolase and maintain SAM utilization and recycling.


Asunto(s)
Adenosina Quinasa/deficiencia , Arabidopsis/enzimología , Adenosina/metabolismo , Adenosina Desaminasa/biosíntesis , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Adenosilhomocisteinasa , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidrolasas/metabolismo , Metilación , Mutación , Pectinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA