Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 95(3): 558-575, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38069470

RESUMEN

OBJECTIVE: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS: Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS: FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION: We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.


Asunto(s)
Síndrome del Cromosoma X Frágil , Sustancia Blanca , Humanos , Astrocitos/metabolismo , Temblor/genética , Gliosis/patología , Caspasa 3/metabolismo , Sustancia Blanca/patología , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ataxia/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
2.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696601

RESUMEN

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Asunto(s)
Proteínas de la Membrana , Corteza Prefrontal , Sinapsis , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Humanos , Masculino , Femenino , Sinapsis/patología , Sinapsis/metabolismo , Adulto , Persona de Mediana Edad , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Adulto Joven , Adolescente , Niño , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Inhibición Neural/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
3.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521994

RESUMEN

Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectrum disorder cases. The cellular composition of the fragile X syndrome cortex is not well known. We evaluated alterations in the number of Calbindin, Calretinin, and Parvalbumin expressing interneurons across 5 different cortical areas, medial prefrontal cortex (BA46), primary somatosensory cortex (BA3), primary motor cortex (BA4), superior temporal cortex (BA22), and anterior cingulate cortex (BA24) of fragile X syndrome and neurotypical brains. Compared with neurotypical cases, fragile X syndrome brains displayed a significant reduction in the number of PV+ interneurons in all areas and of CR+ interneurons in BA22 and BA3. The number of CB+ interneurons did not differ. These findings are the first to demonstrate that fragile X syndrome brains are characterized by cortical wide PV+ interneuron deficits across multiple cortical areas. These add to the idea that deficits in PV+ interneurons could disrupt the cortical balance and promote clinical deficits in fragile X syndrome patients and help to develop novel therapies for neurodevelopmental disorders like fragile X syndrome and autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Humanos , Parvalbúminas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Interneuronas/fisiología , Corteza Prefrontal/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
4.
Cereb Cortex ; 33(6): 3107-3123, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35818636

RESUMEN

Sizes of neuronal, astroglial and oligodendroglial complements forming the neonatal cerebral cortex largely depend on rates at which pallial stem cells give rise to lineage-committed progenitors and the latter ones progress to mature cell types. Here, we investigated the spatial articulation of pallial stem cells' (SCs) commitment to astrogenesis as well as the progression of committed astroglial progenitors (APs) to differentiated astrocytes, by clonal and kinetic profiling of pallial precursors. We found that caudal-medial (CM) SCs are more prone to astrogenesis than rostro-lateral (RL) ones, while RL-committed APs are more keen to proliferate than CM ones. Next, we assessed the control of these phenomena by 2 key transcription factor genes mastering regionalization of the early cortical primordium, Emx2 and Foxg1, via lentiviral somatic transgenesis, epistasis assays, and ad hoc rescue assays. We demonstrated that preferential CM SCs progression to astrogenesis is promoted by Emx2, mainly via Couptf1, Nfia, and Sox9 upregulation, while Foxg1 antagonizes such progression to some extent, likely via repression of Zbtb20. Finally, we showed that Foxg1 and Emx2 may be implicated-asymmetrically and antithetically-in shaping distinctive proliferative/differentiative behaviors displayed by APs in hippocampus and neocortex.


Asunto(s)
Neocórtex , Neurogénesis , Humanos , Recién Nacido , Astrocitos/metabolismo , Astrocitos/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Factor de Transcripción COUP I/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/metabolismo , Hipocampo/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neocórtex/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/fisiología
5.
Glia ; 71(5): 1176-1196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36594399

RESUMEN

Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Humanos , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Astrocitos/metabolismo , Proteómica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ciclo Celular , Colesterol/metabolismo
6.
Cereb Cortex ; 32(21): 4902-4912, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35212358

RESUMEN

The cerebral cortex presents with alterations in the number of specific cell types in autism spectrum disorder (ASD). Astrocytes have many functions in the brain including a role in higher cognitive functions and in inflammatory brain processes. Therefore, an alteration in number, function, and/or activation state of astrocytes, could be present in ASD. We quantified astrocyte number in the gray and white matter of the prefrontal cortex-BA9, BA46, and BA47-in 15 ASD and 15 age- and sex-matched control cases. We labeled astrocytes with antibodies against the protein GFAP and S100ß, markers of astrocytes. We found a significant decrease in the number of astrocytes in the gray and white matter of all prefrontal areas of interest with both markers. We also found an increased state of activation of GFAP+ astrocytes in all areas. A reduced number of astrocytes in the cerebral cortex in ASD could lead to impaired synaptic function and disrupted connectivity. An increased astrocyte activation may indicate a chronic mild inflammatory state of the cerebral cortex in ASD. Overall, we found that astrocytes are disrupted in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Sustancia Blanca , Humanos , Sustancia Blanca/metabolismo , Astrocitos/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Corteza Prefrontal/metabolismo , Inflamación/metabolismo , Sustancia Gris/metabolismo
7.
Ann Gen Psychiatry ; 22(1): 45, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932739

RESUMEN

BACKGROUND: There is a critical need for effective treatment of the core symptoms of autism spectrum disorder (ASD). The purinergic antagonist suramin may improve core symptoms through restoration of normal mitochondrial function and reduction of neuro-inflammation via its known antagonism of P2X and P2Y receptors. Nonclinical studies in fragile X knockout mice and the maternal immune activation model support these hypotheses. METHODS: We conducted a 14 week, randomized, double-blind, placebo-controlled proof -of-concept study (N = 52) to test the efficacy and safety of suramin intravenous infusions in boys aged 4-15 years with moderate to severe ASD. The study had 3 treatment arms: 10 mg/kg suramin, 20 mg/kg suramin, and placebo given at baseline, week 4, and week 8. The Aberrant Behavior Checklist of Core Symptoms (ABC-Core) (subscales 2, 3, and 5) was the primary endpoint and the Clinical Global Impressions-Improvement (CGI-I) was a secondary endpoint. RESULTS: Forty-four subjects completed the study. The 10 mg/kg suramin group showed a greater, but statistically non-significant, numeric improvement (- 12.5 ± 3.18 [mean ± SE]) vs. placebo (- 8.9 ± 2.86) in ABC-Core at Week 14. The 20 mg/kg suramin group did not show improvement over placebo. In exploratory analyses, the 10 mg/kg arm showed greater ABC Core differences from placebo in younger subjects and among those with less severe symptoms. In CGI-I, the 10 mg/kg arm showed a statistically significant improvement from baseline (2.8 ± 0.30 [mean ± SE]) compared to placebo (1.7 ± 0.27) (p = 0.016). The 20 mg/kg arm had a 2.0 ± 0.28 improvement in CGI-I, which was not statistically significant compared to placebo (p = 0.65). CONCLUSION: Suramin was generally safe and well tolerated over 14 weeks; most adverse events were mild to moderate in severity. Trial Registration Registered with the South African Health Authority, registration number DOH-27-0419-6116. CLINICALTRIALS: Gov registration ID is NCT06058962, last update posted 2023-09-28.

8.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139097

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.


Asunto(s)
Síndrome del Cromosoma X Frágil , Temblor , Humanos , Temblor/genética , Sustancia Gris/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Ataxia/genética , Hipocampo/metabolismo , Expansión de Repetición de Trinucleótido
9.
Glia ; 70(1): 145-154, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533866

RESUMEN

Varicose projection astrocytes (VP-As) are found in the cerebral cortex and have been described to be specific to humans and chimpanzees. To further examine the phylogenetic distribution of this cell type, we analyzed cortical tissue from several primates ranging from primitive primates to primates evolutionary closer to human such as apes. We specifically analyzed tissue from four strepsirrhine species, one tarsier, six species of platyrrhine monkeys, ten species of cercopithecoid monkeys, two hylobatid ape species, four to six cases each of chimpanzee, bonobo, gorilla, and orangutan, and thirteen human. We found that VP-As were present only in human and other apes (hominoids) and were absent in all other species. We showed that VP-As are localized to layer VI and the superficial white matter of the cortex. The presence of VP-As co-occured with interlaminar astrocytes that also had varicosities in their processes. Due to their location, their long tangential processes, and their irregular presence within species, we propose that VP-As are astrocytes that develop varicosities under specific conditions and that are not a distinct astrocyte type.


Asunto(s)
Astrocitos , Primates , Animales , Astrocitos/metabolismo , Evolución Biológica , Corteza Cerebral , Filogenia , Primates/metabolismo
10.
Cereb Cortex ; 31(4): 2139-2155, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279961

RESUMEN

Microglial cells make extensive contacts with neural precursor cells (NPCs) and affiliate with vasculature in the developing cerebral cortex. But how vasculature contributes to cortical histogenesis is not yet fully understood. To better understand functional roles of developing vasculature in the embryonic rat cerebral cortex, we investigated the temporal and spatial relationships between vessels, microglia, and NPCs in the ventricular zone. Our results show that endothelial cells in developing cortical vessels extend numerous fine processes that directly contact mitotic NPCs and microglia; that these processes protrude from vessel walls and are distinct from tip cell processes; and that microglia, NPCs, and vessels are highly interconnected near the ventricle. These findings demonstrate the complex environment in which NPCs are embedded in cortical proliferative zones and suggest that developing vasculature represents a source of signaling with the potential to broadly influence cortical development. In summary, cortical histogenesis arises from the interplay among NPCs, microglia, and developing vasculature. Thus, factors that impinge on any single component have the potential to change the trajectory of cortical development and increase susceptibility for altered neurodevelopmental outcomes.


Asunto(s)
Ventrículos Cerebrales/irrigación sanguínea , Ventrículos Cerebrales/embriología , Neocórtex/irrigación sanguínea , Neocórtex/embriología , Neurogénesis/fisiología , Neuroinmunomodulación/fisiología , Animales , Ventrículos Cerebrales/citología , Desarrollo Embrionario/fisiología , Femenino , Microglía/fisiología , Neocórtex/citología , Células-Madre Neurales/fisiología , Embarazo , Ratas
11.
Cereb Cortex ; 31(6): 2944-2951, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33527113

RESUMEN

An alteration in the balance of excitation-inhibition has been proposed as a common characteristic of the cerebral cortex in autism, which may be due to an alteration in the number and/or function of the excitatory and/or inhibitory cells that form the cortical circuitry. We previously found a decreased number of the parvalbumin (PV)+ interneuron known as Chandelier (Ch) cell in the prefrontal cortex in autism. This decrease could result from a decreased number of Ch cells, but also from decreased PV protein expression by Ch cells. To further determine if Ch cell number is altered in autism, we quantified the number of Ch cells following a different approach and different patient cohort than in our previous studies. We quantified the number of Ch cell cartridges-rather than Ch cell somata-that expressed GAT1-rather than PV. Specifically, we quantified GAT1+ cartridges in prefrontal areas BA9, BA46, and BA47 of 11 cases with autism and 11 control cases. We found that the density of GAT1+ cartridges was decreased in autism in all areas and layers. Whether this alteration is cause or effect remains unclear but could result from alterations that take place during cortical prenatal and/or postnatal development.


Asunto(s)
Trastorno Autístico/patología , Interneuronas/patología , Red Nerviosa/patología , Corteza Prefrontal/patología , Adolescente , Recuento de Células/métodos , Niño , Femenino , Humanos , Interneuronas/química , Interneuronas/citología , Masculino , Red Nerviosa/química , Red Nerviosa/citología , Corteza Prefrontal/química , Corteza Prefrontal/citología , Adulto Joven
12.
Cereb Cortex ; 31(1): 379-395, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32930323

RESUMEN

Interlaminar astrocytes (ILAs) are a subset of cortical astrocytes that reside in layer I, express GFAP, have a soma contacting the pia, and contain long interlaminar processes that extend through several cortical layers. We studied the prenatal and postnatal development of ILAs in three species of primates (rhesus macaque, chimpanzee, and human). We found that ILAs are generated prenatally likely from radial glial (RG) cells, that ILAs proliferate locally during gestation, and that ILAs extend interlaminar processes during postnatal stages of development. We showed that the density and morphological complexity of ILAs increase with age, and that ILAs express multiple markers that are expressed by RG cells (Pax6, Sox2, and Nestin), specific to inner and outer RG cells (Cryab and Hopx), and astrocyte markers (S100ß, Aqp4, and GLAST) in prenatal stages and in adult. Finally, we demonstrated that rudimentary ILAs in mouse also express the RG markers Pax6, Sox2, and Nestin, but do not express S100ß, Cryab, or Hopx, and that the density and morphological complexity of ILAs differ between primate species and mouse. Together these findings contribute new information on astrogenesis of this unique class of cells and suggest a lineal relationship between RG cells and ILAs.


Asunto(s)
Astrocitos/metabolismo , Biomarcadores/análisis , Corteza Cerebral/metabolismo , Macaca mulatta/metabolismo , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Neuronas/metabolismo
13.
Mov Disord ; 36(8): 1935-1943, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33760253

RESUMEN

BACKGROUND: Fragile X-associated tremor/ataxia syndrome is a neurodegenerative disease of late onset developed by carriers of the premutation in the fragile x mental retardation 1 (FMR1) gene. Pathological features of neurodegeneration in fragile X-associated tremor/ataxia syndrome include toxic levels of FMR1 mRNA, ubiquitin-positive intranuclear inclusions, white matter disease, iron accumulation, and a proinflammatory state. OBJECTIVE: The objective of this study was to analyze the presence of cerebral microbleeds in the brains of patients with fragile X-associated tremor/ataxia syndrome and investigate plausible causes for cerebral microbleeds in fragile X-associated tremor/ataxia syndrome. METHODS: We collected cerebral and cerebellar tissue from 15 fragile X-associated tremor/ataxia syndrome cases and 15 control cases carrying FMR1 normal alleles. We performed hematoxylin and eosin, Perls and Congo red stains, ubiquitin, and amyloid ß protein immunostaining. We quantified the number of cerebral microbleeds, amount of iron, presence of amyloid ß within the capillaries, and number of endothelial cells containing intranuclear inclusions. We evaluated the relationships between pathological findings using correlation analysis. RESULTS: We found intranuclear inclusions in the endothelial cells of capillaries and an increased number of cerebral microbleeds in the brains of those with fragile X-associated tremor/ataxia syndrome, both of which are indicators of cerebrovascular dysfunction. We also found a suggestive association between the amount of capillaries that contain amyloid ß in the cerebral cortex and the rate of disease progression. CONCLUSION: We propose microangiopathy as a pathologic feature of fragile X-associated tremor/ataxia syndrome. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Síndrome del Cromosoma X Frágil , Enfermedades Neurodegenerativas , Ataxia/complicaciones , Ataxia/genética , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/diagnóstico por imagen , Células Endoteliales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/genética , Humanos , Temblor/complicaciones , Temblor/genética
14.
Semin Cell Dev Biol ; 76: 15-22, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28964836

RESUMEN

Comparative developmental studies provide growing understanding of vertebrate forebrain evolution. This short review directs the spotlight to some newly emerging aspects, including the evolutionary origin of the proliferative region known as the subventricular zone (SVZ) and of intermediate progenitor cells (IPCs) that populate the SVZ, neural circuits that originated within homologous regions across all amniotes, and the role of thermogenesis in the acquisition of an increased brain size. These data were presented at the 8th European Conference on Comparative Neurobiology.


Asunto(s)
Neurogénesis/genética , Termogénesis/genética , Humanos
15.
Neurobiol Dis ; 136: 104740, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31927143

RESUMEN

This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Animales , Ataxia/genética , Ataxia/metabolismo , Ataxia/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Temblor/genética , Temblor/metabolismo , Temblor/patología
16.
Mov Disord ; 35(4): 687-693, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951675

RESUMEN

BACKGROUND: Pathogenic variants in the small GTPase Ras Analogue in Brain 39b (RAB39B) have been linked to the development of early-onset parkinsonism. The study was aimed at delineating the clinical and neuropathological features associated with a previously reported pathogenic variant in RAB39B (c.503C>A p.T168K) and testing for dysregulation of RAB39B in idiopathic PD. METHODS: Clinical details of a male individual hemizygous for the T168K variant were collected by systematic review of medical records. Neuropathological studies of fixed brain tissue were performed and steady-state RAB39B levels were determined by western blot analysis. RESULTS: Neuropathological examination showed extensive dopaminergic neuron loss, widespread Lewy pathology, and iron accumulation in the substantia nigra. Additional pathology was observed in the hippocampus and thalamus. Western blot analysis demonstrated that the T168K variant results in loss of RAB39B. In individuals with idiopathic PD (n = 10, 6 male/4 female), steady-state RAB39B was significantly reduced in the prefrontal cortex and substantia nigra. CONCLUSIONS: T168K RAB39B is unstable in vivo and associated with dopaminergic neuron loss and Lewy pathology. Dysregulation of RAB39B in the prefrontal cortex and substantia nigra of individuals with idiopathic PD potentially implicates the protein more broadly in the pathological mechanisms underlying PD and related Lewy body disorders. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
17.
Pediatr Res ; 87(5): 868-871, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31783397

RESUMEN

BACKGROUND: The presence and status of progenitor/stem cells in excencephalic brain have not been previously examined. METHODS: Brain sections of excencephalic 17-week fetus were stained for specific stem and mature cell markers. RESULTS: The ventricles were open, the developing cerebral cortex was thin in the radial dimension, and the ventricular surface was undulated. There was a decreased ratio of subventricular/ventricular zone radial glia precursor cells (RGCs; PAX6+ and HOPX+ cells), a decreased number of intermediate progenitor cells (IPCs; TBR2+), a decreased number of neurons (MAP2+), and an increased number of astrocytes (S100b+), compared to the control. MAP2+ neurons, S100b+ astrocytes, and OLIG2+ oligodendrocytes were present within the subventricular zone. CONCLUSIONS: This indicates that the underlying condition did not initially preclude radial glial cells from undergoing asymmetric divisions that produce IPCs but halted the developmental progression. RGC and IPC presence in the developing cerebral cortex demonstrates that the fundamental building blocks of cortical formation had been established and that a normal sequence of developmental steps had been initiated in this case of exencephaly. These data expand our understanding of exencephaly etiology and highlight the status of cortical progenitor cells that may be linked to the disorder.


Asunto(s)
Corteza Cerebral/embriología , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/patología , Células Madre/citología , Astrocitos/citología , Diferenciación Celular , Femenino , Humanos , Células-Madre Neurales/citología , Neurogénesis , Neuroglía/patología , Neuronas/metabolismo , Oligodendroglía/citología , Fenotipo , Embarazo , Segundo Trimestre del Embarazo
18.
Brain ; 142(9): 2617-2630, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327001

RESUMEN

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Encéfalo/embriología , Encéfalo/patología , Variación Genética/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Proteínas Adaptadoras Transductoras de Señales/química , Adolescente , Animales , Proteínas Relacionadas con la Autofagia/química , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Estructura Secundaria de Proteína
19.
Cereb Cortex ; 29(7): 2782-2796, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29992243

RESUMEN

Microglial cells are increasingly recognized as modulators of brain development. We previously showed that microglia colonize the cortical proliferative zones in the prenatal brain and regulate the number of precursor cells through phagocytosis. To better define cellular interactions between microglia and proliferative cells, we performed lentiviral vector-mediated intraventricular gene transfer to induce enhanced green fluorescent protein expression in fetal cerebrocortical cells. Tissues were collected and counterstained with cell-specific markers to label microglial cells and identify other cortical cell types. We found that microglial cells intimately interact with the radial glial scaffold and make extensive contacts with neural precursor cells throughout the proliferative zones, particularly in the rhesus monkey fetus when compared to rodents. We also identify a subtype of microglia, which we term 'periventricular microglia', that interact closely with mitotic precursor cells in the ventricular zone. Our data suggest that microglia are structural modulators that facilitate remodeling of the proliferative zones as precursor cells migrate away from the ventricle and may facilitate the delamination of precursor cells. Taken together, these results indicate that microglial cells are an integral component of cortical proliferative zones and contribute to the interactive milieu in which cortical precursor cells function.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/embriología , Microglía/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Feto , Macaca mulatta , Ratas
20.
Gac Med Mex ; 156(1): 60-66, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32026885

RESUMEN

Fragile X syndrome is the monogenetic condition that produces more cases of autism and intellectual disability. The repetition of CGG triplets (> 200) and their methylation entail the silencing of the FMR1 gene. The FMRP protein (product of the FMR1 gene) interacts with ribosomes by controlling the translation of specific messengers, and its loss causes alterations in synaptic connectivity. Screening for fragile X syndrome is performed by polymerase chain reaction. Current recommendation of the American Academy of Pediatrics is to test individuals with intellectual disability, global developmental retardation or with a family history of presence of the mutation or premutation. Hispanic countries such as Colombia, Chile and Spain report high prevalence of fragile X syndrome and have created fragile X national associations or corporations that seek to bring patients closer to available diagnostic and treatment networks.


El síndrome X frágil es la condición monogenética que produce más casos de autismo y de discapacidad intelectual. La repetición de tripletes CGG (> 200) y su metilación conllevan el silenciamiento del gen FMR1. La proteína FMRP (producto del gen FMR1) interacciona con los ribosomas, controlando la traducción de mensajeros específicos y su pérdida produce alteraciones de la conectividad sináptica. El tamizaje de síndrome X frágil se realiza por reacción en cadena de la polimerasa. La recomendación actual de la Academia Americana de Pediatría es realizar pruebas a quienes presenten discapacidad intelectual, retraso global del desarrollo o antecedentes familiares de afección por la mutación o premutación. Países hispanos como Colombia, Chile y España reportan altas prevalencias de síndrome X frágil y han creado asociaciones o corporaciones nacionales de X frágil que buscan acercar a los pacientes a redes disponibles de diagnóstico y tratamiento.


Asunto(s)
Trastorno Autístico/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Lista de Verificación , Preescolar , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/terapia , Silenciador del Gen , Pruebas Genéticas , Humanos , Masculino , Mutación , Linaje , Fenotipo , Ribosomas/metabolismo , Factores Sexuales , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA