Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 142(6): 889-901, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20850011

RESUMEN

In response to many apoptotic stimuli, oligomerization of Bax is essential for mitochondrial outer membrane permeabilization and the ensuing release of cytochrome c. These events are accompanied by mitochondrial fission that appears to require Drp1, a large GTPase of the dynamin superfamily. Loss of Drp1 leads to decreased cytochrome c release by a mechanism that is poorly understood. Here we show that Drp1 stimulates tBid-induced Bax oligomerization and cytochrome c release by promoting tethering and hemifusion of membranes in vitro. This function of Drp1 is independent of its GTPase activity and relies on arginine 247 and the presence of cardiolipin in membranes. In cells, overexpression of Drp1 R247A/E delays Bax oligomerization and cell death. Our findings uncover a function of Drp1 and provide insight into the mechanism of Bax oligomerization.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Cardiolipinas/metabolismo , Sistema Libre de Células , Dinaminas , Células HeLa , Humanos , Liposomas/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Ratas
2.
PLoS Genet ; 17(11): e1009873, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748562

RESUMEN

Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Proteínas Mitocondriales/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Transcriptoma
3.
EMBO J ; 38(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30979775

RESUMEN

The mitochondrial pyruvate carrier (MPC) is critical for cellular homeostasis, as it is required in central metabolism for transporting pyruvate from the cytosol into the mitochondrial matrix. MPC has been implicated in many diseases and is being investigated as a drug target. A few years ago, small membrane proteins, called MPC1 and MPC2 in mammals and Mpc1, Mpc2 and Mpc3 in yeast, were proposed to form large protein complexes responsible for this function. However, the MPC complexes have never been isolated and their composition, oligomeric state and functional properties have not been defined. Here, we identify the functional unit of MPC from Saccharomyces cerevisiae In contrast to earlier hypotheses, we demonstrate that MPC is a hetero-dimer, not a multimeric complex. When not engaged in hetero-dimers, the yeast Mpc proteins can also form homo-dimers that are, however, inactive. We show that the earlier described substrate transport properties and inhibitor profiles are embodied by the hetero-dimer. This work provides a foundation for elucidating the structure of the functional complex and the mechanism of substrate transport and inhibition.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Complejos Multiproteicos/fisiología , Multimerización de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Organismos Modificados Genéticamente , Estructura Cuaternaria de Proteína/fisiología , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Temperatura
4.
Cell ; 133(4): 568-70, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485862

RESUMEN

The induction of caspase-independent cell death by killer lymphocytes involves the serine protease granzyme A (GzmA). In this issue, Martinvalet et al. (2008) show that GzmA penetrates the mitochondrial matrix without perturbing normal mitochondrial functions. In the mitochondrial matrix, GzmA cleaves NDUFS3 (a component of the electron transport chain) leading to production of reactive oxygen species and ultimately to cell death.


Asunto(s)
Muerte Celular , Granzimas/metabolismo , Mitocondrias/metabolismo , Animales , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/química , NADH Deshidrogenasa/metabolismo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T Citotóxicos/enzimología
5.
Mol Cell ; 59(3): 491-501, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26253029

RESUMEN

The transport of pyruvate into mitochondria requires a specific carrier, the mitochondrial pyruvate carrier (MPC). The MPC represents a central node of carbon metabolism, and its activity is likely to play a key role in bioenergetics. Until now, investigation of the MPC activity has been limited. However, the recent molecular identification of the components of the carrier has allowed us to engineer a genetically encoded biosensor and to monitor the activity of the MPC in real time in a cell population or in a single cell. We report that the MPC activity is low in cancer cells, which mainly rely on glycolysis to generate ATP, a characteristic known as the Warburg effect. We show that this low activity can be reversed by increasing the concentration of cytosolic pyruvate, thus increasing oxidative phosphorylation. This biosensor represents a unique tool to investigate carbon metabolism and bioenergetics in various cell types.


Asunto(s)
Técnicas Biosensibles/métodos , Fibroblastos/citología , Mediciones Luminiscentes/métodos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Pirúvico/metabolismo , Animales , Línea Celular , Embrión de Mamíferos/citología , Transferencia de Energía , Fibroblastos/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ratones , Análisis de la Célula Individual
6.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36835566

RESUMEN

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Asunto(s)
Caspasas , Factor Estimulante de Colonias de Macrófagos , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/metabolismo , Caspasa 7/metabolismo , Caspasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , NADPH Oxidasas/metabolismo , Monocitos/metabolismo
7.
BMC Biol ; 18(1): 2, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907035

RESUMEN

BACKGROUND: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. RESULTS: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. CONCLUSIONS: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
8.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34502411

RESUMEN

The human mitochondrial genome (mtDNA) regulates its transcription products in specialised and distinct ways as compared to nuclear transcription. Thanks to its mtDNA mitochondria possess their own set of tRNAs, rRNAs and mRNAs that encode a subset of the protein subunits of the electron transport chain complexes. The RNA regulation within mitochondria is organised within specialised, membraneless, compartments of RNA-protein complexes, called the Mitochondrial RNA Granules (MRGs). MRGs were first identified to contain nascent mRNA, complexed with many proteins involved in RNA processing and maturation and ribosome assembly. Most recently, double-stranded RNA (dsRNA) species, a hybrid of the two complementary mRNA strands, were found to form granules in the matrix of mitochondria. These RNA granules are therefore components of the mitochondrial post-transcriptional pathway and as such play an essential role in mitochondrial gene expression. Mitochondrial dysfunctions in the form of, for example, RNA processing or RNA quality control defects, or inhibition of mitochondrial fission, can cause the loss or the aberrant accumulation of these RNA granules. These findings underline the important link between mitochondrial maintenance and the efficient expression of its genome.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Humanos
9.
J Biol Chem ; 294(34): 12581-12598, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285263

RESUMEN

Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2-/-) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Gluconeogénesis , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis , Respiración de la Célula , Hepatocitos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prohibitinas , Proteínas Represoras/deficiencia
10.
EMBO J ; 34(7): 911-24, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25672363

RESUMEN

At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPCFERM and MPCOX. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPCOX has a higher transport activity than MPCFERM, which is dependent on the C-terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.


Asunto(s)
Proteínas de Transporte de Anión/biosíntesis , Proteínas de la Membrana/biosíntesis , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Anión/genética , Transporte Biológico Activo/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/genética , Consumo de Oxígeno/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
NMR Biomed ; 32(11): e4163, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424145

RESUMEN

We aimed to evaluate the feasibility of neurochemical profiling of embryonic mouse brain developments in utero and to seek potential in vivo evidence of an energy shift in a mitochondrial pyruvate carrier 1 (MPC1) deficient mouse model. C57BL/6 embryonic mouse brains were studied in utero by anatomical MRI and short echo localized proton (1 H) MRS at 14.1 T. Two embryonic stages were studied, the energy shift (e.g., embryonic day 12.5-13, E12.5-13) and close to the birth (E17.5-18). In addition, embryonic brains devoid of MPC1 were studied at E12.5-13. The MRI provided sufficient anatomical contrasts for visualization of embryonic brain. Localized 1 H MRS offered abundant metabolites through the embryonic development from E12.5 and close to the birth, e.g., E17.5 and beyond. The abundant neurochemical information at E12.5 provided metabolic status and processes relating to cellular development at this stage, i.e., the energy shift from glycolysis to oxidative phosphorylation, evidenced by accumulation of lactate in E12.5-13 embryonic brain devoid of MPC1. The further evolution of the neurochemical profile of embryonic brains at E17.5-18 is consistent with cellular and metabolic processes towards the birth. Localized 1 H MRS study of embryonic brain development in utero is feasible, and longitudinal neurochemical profiling of embryonic brains offers valuable insight into early brain development.


Asunto(s)
Química Encefálica , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Animales , Estudios de Factibilidad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Nucleic Acids Res ; 45(10): 6135-6146, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28335001

RESUMEN

FASTK family proteins have been identified as regulators of mitochondrial RNA homeostasis linked to mitochondrial diseases, but much remains unknown about these proteins. We show that CRISPR-mediated disruption of FASTKD1 increases ND3 mRNA level, while disruption of FASTKD4 reduces the level of ND3 and of other mature mRNAs including ND5 and CYB, and causes accumulation of ND5-CYB precursor RNA. Disrupting both FASTKD1 and FASTKD4 in the same cell results in decreased ND3 mRNA similar to the effect of depleting FASTKD4 alone, indicating that FASTKD4 loss is epistatic. Interestingly, very low levels of FASTKD4 are sufficient to prevent ND3 loss and ND5-CYB precursor accumulation, suggesting that FASTKD4 may act catalytically. Furthermore, structural modeling predicts that each RAP domain of FASTK proteins contains a nuclease fold with a conserved aspartate residue at the putative active site. Accordingly, mutation of this residue in FASTKD4 abolishes its function. Experiments with FASTK chimeras indicate that the RAP domain is essential for the function of the FASTK proteins, while the region upstream determines RNA targeting and protein localization. In conclusion, this paper identifies new aspects of FASTK protein biology and suggests that the RAP domain function depends on an intrinsic nucleolytic activity.


Asunto(s)
Citocromos b/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , ARN/metabolismo , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , ARN/genética , ARN Mensajero/genética , ARN Mitocondrial , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Homología de Secuencia , Transcripción Genética
13.
Nucleic Acids Res ; 45(19): 10941-10947, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29036396

RESUMEN

The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1-5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Mitocondriales/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , ARN/genética , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , Proteínas de Unión al ARN/metabolismo
14.
PLoS Genet ; 12(5): e1006056, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27176894

RESUMEN

Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival.


Asunto(s)
Proteínas de Transporte de Anión/genética , Ciclo del Ácido Cítrico/genética , Dieta Cetogénica , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Animales , Proteínas de Transporte de Anión/deficiencia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Genes Letales , Glucosa/metabolismo , Glutamina/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos , Embarazo , Ácido Pirúvico/metabolismo
15.
J Biol Chem ; 292(11): 4519-4532, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28082677

RESUMEN

Mitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking. Here, we have applied a microscopy-based approach that has allowed us to identify novel components of the MRG proteome. Among these, we have focused our attention on RPUSD4, an uncharacterized mitochondrial putative pseudouridine synthase. We show that RPUSD4 depletion leads to a severe reduction of the steady-state level of the 16S mitochondrial (mt) rRNA with defects in the biogenesis of the mitoribosome large subunit and consequently in mitochondrial translation. We report that RPUSD4 binds 16S mt-rRNA, mt-tRNAMet, and mt-tRNAPhe, and we demonstrate that it is responsible for pseudouridylation of the latter. These data provide new insights into the relevance of RNA pseudouridylation in mitochondrial gene expression.


Asunto(s)
Transferasas Intramoleculares/metabolismo , ARN/metabolismo , Línea Celular , Humanos , Transferasas Intramoleculares/análisis , Transferasas Intramoleculares/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Mitocondrial , ARN Ribosómico 16S/metabolismo , ARN Interferente Pequeño/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo
16.
J Biol Chem ; 291(32): 16448-61, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27317664

RESUMEN

Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence of a novel MPC subunit termed MPC1-like (MPC1L), which is present uniquely in placental mammals. MPC1L shares high sequence, structural, and topological homology with MPC1. In addition, we provide several lines of evidence to show that MPC1L is functionally equivalent to MPC1: 1) when co-expressed with MPC2, it rescues pyruvate import in a MPC-deleted yeast strain; 2) in mammalian cells, it can associate with MPC2 to form a functional carrier as assessed by bioluminescence resonance energy transfer; 3) in MPC1 depleted mouse embryonic fibroblasts, MPC1L rescues the loss of pyruvate-driven respiration and stabilizes MPC2 expression; and 4) MPC1- and MPC1L-mediated pyruvate imports show similar efficiency. However, we show that MPC1L has a highly specific expression pattern and is localized almost exclusively in testis and more specifically in postmeiotic spermatids and sperm cells. This is in marked contrast to MPC1/MPC2, which are ubiquitously expressed throughout the organism. To date, the biological importance of this alternative MPC complex during spermatogenesis in placental mammals remains unknown. Nevertheless, these findings open up new avenues for investigating the structure-function relationship within the MPC complex.


Asunto(s)
Proteínas de Transporte de Anión/biosíntesis , Regulación de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Espermátides/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Transportadores de Ácidos Monocarboxílicos , Espermátides/citología , Testículo/citología
17.
J Biol Chem ; 291(50): 25877-25887, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27789713

RESUMEN

The Fas-activated serine/threonine kinase (FASTK) family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domain named RAP (for RNA-binding domain abundant in Apicomplexans), shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2, and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knock-out cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2, and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Línea Celular Tumoral , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Serina-Treonina Quinasas/genética , ARN/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mitocondrial
18.
Biochim Biophys Acta ; 1863(10): 2436-42, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26826034

RESUMEN

Mitochondria play a key role in energy metabolism, hosting the machinery for oxidative phosphorylation, the most efficient cellular pathway for generating ATP. A major checkpoint in this process is the transport of pyruvate produced by cytosolic glycolysis into the mitochondrial matrix, which is accomplished by the recently identified mitochondrial pyruvate carrier (MPC). As the gatekeeper for pyruvate entry into mitochondria, the MPC is thought to be of fundamental importance in establishing the metabolic programming of a cell. This is especially relevant in the context of the aerobic glycolysis, also known as the Warburg effect, which is a hallmark in many types of cancer, and MPC loss of function promotes cancer growth. Moreover, mitochondrial pyruvate uptake is needed for efficient hepatic gluconeogenesis and the regulation of blood glucose levels. In this review we discuss recent advances in our knowledge of the MPC, and we argue that it may offer a promising target in diseases like cancer and type 2 diabetes. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Pirúvico/metabolismo , Animales , Proteínas de Transporte de Anión/deficiencia , Proteínas de Transporte de Anión/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Homeostasis , Humanos , Hígado/metabolismo , Mamíferos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales , Transportadores de Ácidos Monocarboxílicos , Neoplasias/metabolismo , Fosforilación Oxidativa , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25008111

RESUMEN

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Humanos , Proteínas Mitocondriales/genética , Mutación , Proteínas de Neoplasias/metabolismo , Fosforilación Oxidativa , Polinucleotido Adenililtransferasa/genética , Cultivo Primario de Células , Procesamiento Postranscripcional del ARN , ARN Mitocondrial , Proteínas de Unión al ARN/metabolismo
20.
Apoptosis ; 19(4): 719-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24362790

RESUMEN

The increase of cancer specificity and efficacy of anti-tumoral agents are prime strategies to overcome the deleterious side effects associated with anti-cancer treatments. We described earlier a cell-permeable protease-resistant peptide derived from the p120 RasGAP protein, called TAT-RasGAP317-326, as being an efficient tumor-specific sensitizer to apoptosis induced by genotoxins in vitro and in vivo. Bcl-2 family members regulate the intrinsic apoptotic response and as such could be targeted by TAT-RasGAP317-326. Our results indicate that the RasGAP-derived peptide increases cisplatin-induced Bax activation. We found no evidence, using in particular knock-out cells, of an involvement of other Bcl-2 family proteins in the tumor-specific sensitization activity of TAT-RasGAP317-326. The absence of Bax and Bak in mouse embryonic fibroblasts rendered them resistant to cisplatin-induced apoptosis and consequently to the sensitizing action of the RasGAP-derived peptide. Surprisingly, in the HCT116 colon carcinoma cell line, the absence of Bax and Bak did not prevent cisplatin-induced apoptosis and the ability of TAT-RasGAP317-326 to augment this response. Our study also revealed that p53, while required for an efficient genotoxin-induced apoptotic response, is dispensable for the ability of the RasGAP-derived peptide to improve the capacity of genotoxins to decrease long-term survival of cancer cells. Hence, even though genotoxin-induced Bax activity can be increased by TAT-RasGAP317-326, the sensitizing activity of the RasGAP-derived peptide can operate in the absence of a functional mitochondrial intrinsic death pathway.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Activadoras de GTPasa/farmacología , Fragmentos de Péptidos/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Línea Celular Tumoral/efectos de los fármacos , Permeabilidad de la Membrana Celular , Cisplatino/farmacología , Humanos , Ratones Noqueados , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA