Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(9): 5612-5701, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36916764

RESUMEN

Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.


Asunto(s)
Plásticos , Poliuretanos , Plásticos/metabolismo , Polímeros , Reciclaje
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101920

RESUMEN

During prolonged trains of presynaptic action potentials (APs), synaptic release reaches a stable level that reflects the speed of replenishment of the readily releasable pool (RRP). Determining the size and filling dynamics of vesicular pools upstream of the RRP has been hampered by a lack of precision of synaptic output measurements during trains. Using the recent technique of tracking vesicular release in single active zone synapses, we now developed a method that allows the sizes of the RRP and upstream pools to be followed in time. We find that the RRP is fed by a small-sized pool containing approximately one to four vesicles per docking site at rest. This upstream pool is significantly depleted by short AP trains, and reaches a steady, depleted state for trains of >10 APs. We conclude that a small, highly dynamic vesicular pool upstream of the RRP potently controls synaptic strength during sustained stimulation.


Asunto(s)
Potenciales Sinápticos/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Potenciales de Acción/fisiología , Animales , Masculino , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
3.
Nano Lett ; 24(3): 822-828, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263950

RESUMEN

Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)2Te3 with 2D FM Fe3GeTe2 (FGT). Harmonic magnetotransport measurements reveal that the SOT efficiency exhibits a non-monotonic temperature dependence and experiences a substantial enhancement with a reduction of the FGT thickness to 2 monolayers. Our study further demonstrates that the magnetization of ultrathin FGT films can be switched with a current density of Jc ∼ 1010 A/m2, with minimal device-to-device variations compared to previous investigations involving traditional FMs.

4.
Biophys J ; 123(12): 1542-1552, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38664965

RESUMEN

Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCCICCG, an optimized PETase, derived from the leaf-branch compost cutinase enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0, whereas the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30°C to 50°C. Whereas the hydrolytic activity of the enzyme toward a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity and underscores the importance of studying the enzyme at the liquid-solid interface.


Asunto(s)
Tereftalatos Polietilenos , Concentración de Iones de Hidrógeno , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Hidrólisis , Temperatura , Modelos Moleculares
5.
Physiol Rev ; 97(4): 1403-1430, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835509

RESUMEN

Quantal fluctuations are an integral part of synaptic signaling. At the frog neuromuscular junction, Bernard Katz proposed that quantal fluctuations originate at "reactive sites" where specific structures of the presynaptic membrane interact with synaptic vesicles. However, the physical nature of reactive sites has remained unclear, both at the frog neuromuscular junction and at central synapses. Many central synapses, called simple synapses, are small structures containing a single presynaptic active zone and a single postsynaptic density of receptors. Several lines of evidence indicate that simple synapses may release several synaptic vesicles in response to a single action potential. However, in some synapses at least, each release event activates a significant fraction of the postsynaptic receptors, giving rise to a sublinear relation between vesicular release and postsynaptic current. Partial receptor saturation as well as synaptic jitter gives to simple synapse signaling the appearance of a binary process. Recent investigations of simple synapses indicate that the number of released vesicles follows binomial statistics, with a maximum reflecting the number of docking sites present in the active zone. These results suggest that at central synapses, vesicular docking sites represent the reactive sites proposed by Katz. The macromolecular architecture and molecular composition of docking sites are presently investigated with novel combinations of techniques. It is proposed that variations in docking site numbers are central in defining intersynaptic variability and that docking site occupancy is a key parameter regulating short-term synaptic plasticity.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas/fisiología , Animales , Humanos , Unión Neuromuscular/fisiología
7.
Proc Natl Acad Sci U S A ; 117(20): 11097-11108, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358199

RESUMEN

It has been known for a long time that inositol-trisphosphate (IP3) receptors are present in the axon of certain types of mammalian neurons, but their functional role has remained unexplored. Here we show that localized photolysis of IP3 induces spatially constrained calcium rises in Purkinje cell axons. Confocal immunohistology reveals that the axon initial segment (AIS), as well as terminals onto deep cerebellar cells, express specific subtypes of Gα/q and phospholipase C (PLC) molecules, together with the upstream purinergic receptor P2Y1. By contrast, intermediate parts of the axon express another set of Gα/q and PLC molecules, indicating two spatially segregated signaling cascades linked to IP3 generation. This prompted a search for distinct actions of IP3 in different parts of Purkinje cell axons. In the AIS, we found that local applications of the specific P2Y1R agonist MRS2365 led to calcium elevation, and that IP3 photolysis led to inhibition of action potential firing. In synaptic terminals on deep cerebellar nuclei neurons, we found that photolysis of both IP3 and ATP led to GABA release. We propose that axonal IP3 receptors can inhibit action potential firing and increase neurotransmitter release, and that these effects are likely controlled by purinergic receptors. Altogether our results suggest a rich and diverse functional role of IP3 receptors in axons of mammalian neurons.


Asunto(s)
Potenciales de Acción/fisiología , Axones/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/metabolismo , Calcio/metabolismo , Cerebelo/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Receptores Purinérgicos P2Y1 , Fosfolipasas de Tipo C/metabolismo
8.
Nano Lett ; 22(23): 9260-9267, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36394996

RESUMEN

Multilayers based on quantum materials (complex oxides, topological insulators, transition-metal dichalcogenides, etc.) have enabled the design of devices that could revolutionize microelectronics and optoelectronics. However, heterostructures incorporating quantum materials from different families remain scarce, while they would immensely broaden the range of possible applications. Here we demonstrate the large-scale integration of compounds from two highly multifunctional families: perovskite oxides and transition-metal dichalcogenides (TMDs). We couple BiFeO3, a room-temperature multiferroic oxide, and WSe2, a semiconducting two-dimensional material with potential for photovoltaics and photonics. WSe2 is grown by molecular beam epitaxy and transferred on a centimeter-scale onto BiFeO3 films. Using angle-resolved photoemission spectroscopy, we visualize the electronic structure of 1 to 3 monolayers of WSe2 and evidence a giant energy shift as large as 0.75 eV induced by the ferroelectric polarization direction in the underlying BiFeO3. Such a strong shift opens new perspectives in the efficient manipulation of TMD properties by proximity effects.

9.
Biophys J ; 121(15): 2882-2894, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35794828

RESUMEN

Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72°C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.


Asunto(s)
Plásticos , Tereftalatos Polietilenos , Plásticos/química , Temperatura
10.
Nanotechnology ; 31(25): 255602, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187582

RESUMEN

The search for high-quality transition metal dichalcogenides mono- and multi-layers grown on large areas is still a very active field of investigation. Here, we use molecular beam epitaxy to grow WSe2 on 15 × 15 mm large mica in the van der Waals regime. By screening one-step growth conditions, we find that very high temperature (>900 °C) and very low deposition rate (<0.15 Å min-1) are necessary to obtain high quality WSe2 films. The domain size can be as large as 1 µm and the in-plane rotational misorientation of 1.25°. The WSe2 monolayer is also robust against air exposure, can be easily transferred over 1 cm2 on SiN/SiO2 and exhibits strong photoluminescence signal. Moreover, by combining grazing incidence x-ray diffraction and transmission electron microscopy, we could detect the presence of few misoriented grains. A two-dimensional model based on atomic coincidences between the WSe2 and mica crystals allows us to explain the formation of these misoriented grains and gives insight to achieve highly crystalline WSe2.

11.
Proc Natl Acad Sci U S A ; 114(26): E5246-E5255, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607047

RESUMEN

Many central synapses contain a single presynaptic active zone and a single postsynaptic density. Vesicular release statistics at such "simple synapses" indicate that they contain a small complement of docking sites where vesicles repetitively dock and fuse. In this work, we investigate functional and morphological aspects of docking sites at simple synapses made between cerebellar parallel fibers and molecular layer interneurons. Using immunogold labeling of SDS-treated freeze-fracture replicas, we find that Cav2.1 channels form several clusters per active zone with about nine channels per cluster. The mean value and range of intersynaptic variation are similar for Cav2.1 cluster numbers and for functional estimates of docking-site numbers obtained from the maximum numbers of released vesicles per action potential. Both numbers grow in relation with synaptic size and decrease by a similar extent with age between 2 wk and 4 wk postnatal. Thus, the mean docking-site numbers were 3.15 at 2 wk (range: 1-10) and 2.03 at 4 wk (range: 1-4), whereas the mean numbers of Cav2.1 clusters were 2.84 at 2 wk (range: 1-8) and 2.37 at 4 wk (range: 1-5). These changes were accompanied by decreases of miniature current amplitude (from 93 pA to 56 pA), active-zone surface area (from 0.0427 µm2 to 0.0234 µm2), and initial success rate (from 0.609 to 0.353), indicating a tightening of synaptic transmission with development. Altogether, these results suggest a close correspondence between the number of functionally defined vesicular docking sites and that of clusters of voltage-gated calcium channels.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Ratas , Ratas Sprague-Dawley
12.
Biotechnol Bioeng ; 116(10): 2451-2462, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31282998

RESUMEN

Claviceps purpurea bifunctional Δ12-hydroxylase/desaturase, CpFAH12, and monofunctional desaturase CpFAD2, share 86% of sequence identity. To identify the underlying determinants of the hydroxylation/desaturation specificity, chimeras of these two enzymes were tested for their fatty acid production in an engineered Yarrowia lipolytica strain. It reveals that transmembrane helices are not involved in the hydroxylation/desaturation specificity whereas all cytosolic domains have an impact on it. Especially, replacing the CpFAH12 cytosolic part near the second histidine-box by the corresponding CpFAD2 part annihilates all hydroxylation activity. Further mutagenesis experiments within this domain identified isoleucine 198 as the crucial element for the hydroxylation activity of CpFAH12. Monofunctional variants performing the only desaturation were obtained when this position was exchanged by the threonine of CpFAD2. Saturation mutagenesis at this position showed modulation in the hydroxylation/desaturation specificity in the different variants. The WT enzyme was demonstrated as the most efficient for ricinoleic acid production and some variants showed a better desaturation activity. A model based on the recently discovered membrane desaturase structures indicate that these changes in specificity are more likely due to modifications in the di-iron center geometry rather than changes in the substrate binding mode.


Asunto(s)
Claviceps/enzimología , Ácido Graso Desaturasas/química , Proteínas Fúngicas/química , Dominio Catalítico , Claviceps/genética , Ácido Graso Desaturasas/genética , Proteínas Fúngicas/genética , Hidroxilación , Mutagénesis , Dominios Proteicos
13.
Microb Cell Fact ; 18(1): 99, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31151440

RESUMEN

BACKGROUND: The oleaginous yeast Yarrowia lipolytica is an organism of choice for the tailored production of various compounds such as biofuels or biopolymers. When properly engineered, it is capable of producing medium-chain-length polyhydroxyalkanoate (mcl-PHA), a biobased and biodegradable polymer that can be used as bioplastics or biopolymers for environmental and biomedical applications. RESULTS: This study describes the bioproduction and the main properties of two different mcl-PHA polymers. We generated by metabolic engineering, strains of Y. lipolytica capable of accumulating more than 25% (g/g) of mcl-PHA polymers. Depending of the strain genetic background and the culture conditions, we produced (i) a mcl-PHA homopolymer of 3-hydroxydodecanoic acids, with a mass-average molar mass (Mw) of 316,000 g/mol, showing soft thermoplastic properties with potential applications in packaging and (ii) a mcl-PHA copolymer made of 3-hydroxyoctanoic (3HO), decanoic (3HD), dodecanoic (3HDD) and tetradecanoic (3TD) acids with a Mw of 128,000 g/mol, behaving like a thermoplastic elastomer with potential applications in biomedical material. CONCLUSION: The ability to engineer Y. lipolytica to produce tailored PHAs together with the range of possible applications regarding their biophysical and mechanical properties opens new perspectives in the field of PHA bioproduction.


Asunto(s)
Ingeniería Metabólica , Polihidroxialcanoatos/biosíntesis , Yarrowia/metabolismo , Microorganismos Modificados Genéticamente , Polihidroxialcanoatos/química , Yarrowia/genética
14.
J Neurosci ; 37(47): 11455-11468, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29066561

RESUMEN

Molecular layer interneurons (MLIs, stellate and basket cells) of the cerebellar cortex are linked together by chemical and electrical synapses and exert a potent feedforward inhibition on Purkinje cells. The functional role of MLIs during specific motor tasks is uncertain. Here, we used two-photon imaging to study the patterns of activity of neighboring individual MLIs in the Crus II region of awake female mice during two types of oromotor activity, licking and bruxing, using specific expression of the genetically encoded calcium indicator protein GCaMP6s. We found that both stellate and basket cells engaged in synchronized waves of calcium activity during licking and bruxing, with high degrees of correlation among the signals collected in individual MLIs. In contrast, no calcium activity was observed during whisking. MLI activity tended to lag behind the onset of sustained licking episodes, indicating a regulatory action of MLIs during licking. Furthermore, during licking, stellate cell activity was anisotropic: the coordination was constant along the direction of parallel fibers (PFs), but fell off with distance along the orthogonal direction. These results suggest a PF drive for Ca2+ signals during licking. In contrast, during bruxing, MLI activity was neither clearly organized spatially nor temporally correlated with oromotor activity. In conclusion, MLI activity exhibits a high degree of correlation both in licking and in bruxing, but spatiotemporal patterns of activity display significant differences for the two types of behavior.SIGNIFICANCE STATEMENT It is known that, during movement, the activity of molecular layer interneurons (MLIs) of the cerebellar cortex is enhanced. However, MLI-MLI interactions are complex because they depend both from excitatory electrical synapses and from potentially inhibitory chemical synapses. Accordingly, the pattern of MLI activity during movement has been unclear. Here, during two oromotor tasks, licking and bruxism, individual neighboring MLIs displayed highly coordinated activity, showing that the positive influences binding MLIs together are predominant. We further find that spatiotemporal patterns differ between licking and bruxing, suggesting that the precise pattern of MLI activity depends on the nature of the motor task.


Asunto(s)
Cerebelo/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Boca/inervación , Animales , Señalización del Calcio , Cerebelo/citología , Femenino , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Boca/fisiología , Periodicidad , Vibrisas/inervación , Vibrisas/fisiología
15.
Microb Cell Fact ; 17(1): 142, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200978

RESUMEN

BACKGROUND: Oleaginous yeast Yarrowia lipolytica is an organism of choice for the development of biofuel and oleochemicals. It has become a chassis for metabolic engineering in order to produce targeted lipids. Understanding the function of key-enzymes involved in lipid metabolism is essential to design better routes for enhanced lipid production and for strains producing lipids of interest. Because medium chain fatty acids (MCFA) are valuable compounds for biokerosene production, we previously generated strains capable of producing MCFA up to 12% of total lipid content (Rigouin et al. in ACS Synth Biol 6:1870-1879, 2017). In order to improve accumulation and content of C14 fatty acid (FA), the elongation, degradation and accumulation of these MCFA in Yarrowia lipolytica were studied. RESULTS: We brought evidence of the role of YALI0F0654 (YlELO1) protein in the elongation of exogenous or de novo synthesized C14 FA into C16 FA and C18 FA. YlELO1 deletion into a αFAS_I1220W expressing strain leads to the sole production of C14 FA. However, because this strain does not provide the FA essential for its growth, it requires being cultivated with essential fatty acids and C14 FA yield is limited. To promote MCFA accumulation in Y. lipolytica without compromising the growth, we overexpressed a plant diglyceride acyltransferase specific for MCFA and reached an accumulation of MCFA up to 45% of total lipid content. CONCLUSION: We characterized the role of YlELO1 in Y. lipolytica by proving its involvement in Medium chain fatty acids elongation. We showed that MCFA content can be increased in Yarrowia lipolytica by promoting their accumulation into a stable storage form (triacylglycerides) to limit their elongation and their degradation.


Asunto(s)
Ácidos Grasos/metabolismo , Ingeniería Metabólica/métodos , Yarrowia/metabolismo
16.
Nanotechnology ; 29(42): 425706, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30052205

RESUMEN

In this work, we study growth and migration of atomic defects in MoSe2 on graphene using multiple advanced transmission electron microscopy techniques to explore defect behavior in vdW heterostructures. A MoSe2/graphene vdW heterostructure is prepared by a direct growth of both monolayers, thereby attaining an ideal vdW interface between the monolayers. We investigate the intrinsic defects (inversion domains and grain boundaries) in synthesized MoSe2, their evolution amid growth processing steps, and their influence on the formation and movement of extrinsic defects. Electron diffraction identifies a preferential interlayer orientation of 2° between MoSe2 and graphene, which is caused by the presence of intrinsic IBD defects. Extrinsic defects (point and line defects) are generated by in situ electron irradiation in the MoSe2 layer. Our results shed light on how to independently modify the MoSe2 atomic structure in vdW heterostructures for potential utilization in device processing.

17.
J Neurosci ; 36(14): 4010-25, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053208

RESUMEN

Many central glutamatergic synapses contain a single presynaptic active zone and a single postsynaptic density. However, the basic functional properties of such "simple synapses" remain unclear. One important step toward understanding simple synapse function is to analyze the number of synaptic vesicles released in such structures per action potential, but this goal has remained elusive until now. Here, we describe procedures that allow reliable vesicular release counting at simple synapses between parallel fibers and molecular layer interneurons of rat cerebellar slices. Our analysis involves local extracellular stimulation of single parallel fibers and deconvolution of resulting EPSCs using quantal signals as template. We observed a reduction of quantal amplitudes (amplitude occlusion) in pairs of consecutive EPSCs due to receptor saturation. This effect is larger (62%) than previously reported and primarily reflects receptor activation rather than desensitization. In addition to activation-driven amplitude occlusion, each EPSC reduces amplitudes of subsequent events by an estimated 3% due to cumulative desensitization. Vesicular release counts at simple synapses follow binomial statistics with a maximum that varies from 2 to 10 among experiments. This maximum presumably reflects the number of docking sites at a given synapse. These results show striking similarities, as well as significant quantitative differences, with respect to previous results at simple GABAergic synapses. SIGNIFICANCE STATEMENT: It is generally accepted that the output signal of individual central synapses saturates at high release probability, but it remains unclear whether the source of saturation is presynaptic, postsynaptic, or both presynaptic and postsynaptic. To clarify this and other issues concerning the function of synapses, we have developed new recording and analysis methods at single central glutamatergic synapses. We find that individual release events engage a high proportion of postsynaptic receptors (62%), revealing a larger component of postsynaptic saturation than anticipated. Conversely, we also find that the number of released synaptic vesicles is limited at each active zone. Altogether, our results argue for both presynaptic and postsynaptic contributions to signal saturation at single glutamatergic synapses.


Asunto(s)
Ácido Glutámico/fisiología , Receptores AMPA/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Algoritmos , Animales , Cerebelo/fisiología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Interneuronas/fisiología , Masculino , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología
18.
Nano Lett ; 16(11): 6755-6760, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27712075

RESUMEN

Spin-orbitronics is based on the ability of spin-orbit interactions to achieve the conversion between charge currents and pure spin currents. As the precise evaluation of the conversion efficiency becomes a crucial issue, the need for straightforward ways to observe this conversion has emerged as one of the main challenges in spintronics. Here, we propose a simple device, akin to the ferromagnetic/nonmagnetic bilayers used in most spin-orbit torques experiments, and consisting of a spin Hall effect wire connected to two transverse ferromagnetic electrodes. We show that this system allows probing electrically the direct and inverse conversion in a spin Hall effect system and measuring both the spin Hall angle and the spin diffusion length. By applying this method to several spin Hall effect materials (Pt, Pd, Au, Ta, W), we show that it represents a promising tool for the metrology of spin-orbit materials.

19.
Biosci Biotechnol Biochem ; 80(11): 2231-2240, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27427953

RESUMEN

cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35-37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.

20.
Proc Natl Acad Sci U S A ; 110(49): E4798-807, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248377

RESUMEN

Even though it has been known for some time that in many mammalian brain areas interneurons are electrically coupled, a quantitative description of the network electrical connectivity and its impact on cellular passive properties is still lacking. Approaches used so far to solve this problem are limited because they do not readily distinguish junctions among direct neighbors from indirect junctions involving intermediary, multiply connected cells. In the cerebellar cortex, anatomical and functional evidence indicates electrical coupling between molecular layer interneurons (basket and stellate cells). An analysis of the capacitive currents obtained under voltage clamp in molecular layer interneurons of juvenile rats or mice reveals an exponential component with a time constant of ~20 ms, which represents capacitive loading of neighboring cells through gap junctions. These results, taken together with dual cell recording of electrical synapses, have led us to estimate the number of direct neighbors to be ~4 for rat basket cells and ~1 for rat stellate cells. The weighted number of neighbors (number of neighbors, both direct and indirect, weighted with the percentage of voltage deflection at steady state) was 1.69 in basket cells and 0.23 in stellate cells. The last numbers indicate the spread of potential changes in the network and serve to estimate the contribution of gap junctions to cellular input conductance. In conclusion the present work offers effective tools to analyze the connectivity of electrically connected interneuron networks, and it indicates that in juvenile rodents, electrical communication is stronger among basket cells than among stellate cells.


Asunto(s)
Cerebelo/citología , Uniones Comunicantes/metabolismo , Interneuronas/fisiología , Modelos Neurológicos , Animales , Capacidad Eléctrica , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Confocal , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA