Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333022

RESUMEN

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Asunto(s)
Evolución Molecular Dirigida , Aprendizaje Automático , Serotonina/metabolismo , Algoritmos , Secuencia de Aminoácidos , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Sitios de Unión , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Fotones , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sueño/fisiología , Vigilia/fisiología
2.
Proc Natl Acad Sci U S A ; 121(3): e2309251121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194458

RESUMEN

Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.


Asunto(s)
Factores Quimiotácticos , Quimiotaxis , Transporte Biológico , Ácido Aspártico , Colorantes
3.
Proc Natl Acad Sci U S A ; 121(21): e2314604121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748581

RESUMEN

We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.


Asunto(s)
Adenosina Trifosfato , Proteínas Fluorescentes Verdes , Adenosina Trifosfato/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas Biosensibles/métodos , Animales , Fosforilación Oxidativa , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética
4.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37142767

RESUMEN

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Asunto(s)
Ácido Glutámico , Transmisión Sináptica , Ratones , Animales , Ácido Glutámico/metabolismo , Cinética , Neuronas/fisiología , Sinapsis/fisiología
5.
Brain ; 147(3): 1011-1024, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787057

RESUMEN

Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. We used fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagated centrifugally. GABA transients lasted longer than glutamate transients and were maximal ∼1.5 mm from the focus where they propagated centripetally. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing seizures to escape from local inhibitory restraint.


Asunto(s)
Epilepsias Parciales , Ácido Glutámico , Humanos , Convulsiones , Cognición , Ácido gamma-Aminobutírico
6.
J Neurosci ; 43(13): 2222-2241, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36868853

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.SIGNIFICANCE STATEMENT Selective serotonin reuptake inhibitors stabilize mood in several disorders. In general, these drugs bind to SERT, which clears serotonin from CNS and peripheral tissues. SERT ligands are effective and relatively safe; primary care practitioners often prescribe them. However, they have several side effects and require 2-6 weeks of continuous administration until they act effectively. How they work remains perplexing, contrasting with earlier assumptions that the therapeutic mechanism involves SERT inhibition followed by increased extracellular serotonin levels. This study establishes that two SERT ligands, fluoxetine and escitalopram, enter neurons within minutes, while simultaneously accumulating in many membranes. Such knowledge will motivate future research, hopefully revealing where and how SERT ligands engage their therapeutic target(s).


Asunto(s)
Trastorno Depresivo Mayor , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Fluoxetina/farmacología , Escitalopram , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Retículo Endoplásmico/metabolismo , Citalopram/farmacología , Mamíferos
7.
Nat Methods ; 17(7): 694-697, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451475

RESUMEN

Femtosecond lasers at fixed wavelengths above 1,000 nm are powerful, stable and inexpensive, making them promising sources for two-photon microscopy. Biosensors optimized for these wavelengths are needed for both next-generation microscopes and affordable turn-key systems. Here we report jYCaMP1, a yellow variant of the calcium indicator jGCaMP7 that outperforms its parent in mice and flies at excitation wavelengths above 1,000 nm and enables improved two-color calcium imaging with red fluorescent protein-based indicators.


Asunto(s)
Calcio/análisis , Colorantes Fluorescentes/química , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Drosophila , Femenino , Rayos Láser , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Corteza Somatosensorial/química
8.
J Am Chem Soc ; 144(19): 8480-8486, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35446570

RESUMEN

We report a reagentless, intensity-based S-methadone fluorescent sensor, iS-methadoneSnFR, consisting of a circularly permuted GFP inserted within the sequence of a mutated bacterial periplasmic binding protein (PBP). We evolved a previously reported nicotine-binding PBP to become a selective S-methadone-binding sensor, via three mutations in the PBP's second shell and hinge regions. iS-methadoneSnFR displays the necessary sensitivity, kinetics, and selectivity─notably enantioselectivity against R-methadone─for biological applications. Robust iS-methadoneSnFR responses in human sweat and saliva and mouse serum enable diagnostic uses. Expression and imaging in mammalian cells demonstrate that S-methadone enters at least two organelles and undergoes acid trapping in the Golgi apparatus, where opioid receptors can signal. This work shows a straightforward strategy in adapting existing PBPs to serve real-time applications ranging from subcellular to personal pharmacokinetics.


Asunto(s)
Agonistas Nicotínicos , Proteínas de Unión Periplasmáticas , Animales , Mamíferos/metabolismo , Metadona , Ratones , Mutación , Orgánulos/metabolismo
9.
Nat Methods ; 16(7): 615-618, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209383

RESUMEN

We advance two-photon microscopy for near-diffraction-limited imaging up to 850 µm below the pia in awake mice. Our approach combines direct wavefront sensing of light from a guidestar (formed by descanned fluorescence from Cy5.5-conjugated dextran in brain microvessels) with adaptive optics to compensate for tissue-induced aberrations in the wavefront. We achieve high signal-to-noise ratios in recordings of glutamate release from thalamocortical axons and calcium transients in spines of layer 5b basal dendrites during active tactile sensing.


Asunto(s)
Axones/metabolismo , Espinas Dendríticas/metabolismo , Animales , Calcio/metabolismo , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía , Relación Señal-Ruido
10.
Nat Methods ; 16(8): 778-786, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31363222

RESUMEN

Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.


Asunto(s)
Corteza Cerebral/fisiología , Ácido Glutámico/metabolismo , Neuronas/fisiología , Tomografía/métodos , Animales , Calcio/metabolismo , Corteza Cerebral/citología , Femenino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Fotones , Ratas
12.
Nat Methods ; 16(8): 763-770, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308547

RESUMEN

Current techniques for monitoring GABA (γ-aminobutyric acid), the primary inhibitory neurotransmitter in vertebrates, cannot follow transients in intact neural circuits. To develop a GABA sensor, we applied the design principles used to create the fluorescent glutamate receptor iGluSnFR. We used a protein derived from a previously unsequenced Pseudomonas fluorescens strain and performed structure-guided mutagenesis and library screening to obtain intensity-based GABA sensing fluorescence reporter (iGABASnFR) variants. iGABASnFR is genetically encoded, detects GABA release evoked by electric stimulation of afferent fibers in acute brain slices and produces readily detectable fluorescence increases in vivo in mice and zebrafish. We applied iGABASnFR to track mitochondrial GABA content and its modulation by an anticonvulsant, swimming-evoked, GABA-mediated transmission in zebrafish cerebellum, GABA release events during interictal spikes and seizures in awake mice, and found that GABA-mediated tone decreases during isoflurane anesthesia.


Asunto(s)
Técnicas Biosensibles/métodos , Encéfalo/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Imagen Molecular/métodos , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Anestesia , Animales , Animales Modificados Genéticamente , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Convulsiones/metabolismo , Convulsiones/patología , Pez Cebra
13.
Nat Methods ; 16(2): 206, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30602783

RESUMEN

In the version of this paper originally published, important figure labels in Fig. 3d were not visible. An image layer present in the authors' original figure that included two small dashed outlines and text labels indicating ROI 1 and ROI 2, as well as a scale bar and the name of the cell label, was erroneously altered during image processing. The figure has been corrected in the HTML and PDF versions of the paper.

14.
Nat Methods ; 16(4): 351, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30820033

RESUMEN

The version of this paper originally published cited a preprint version of ref. 12 instead of the published version (Proc. Natl. Acad. Sci. USA 115, 5594-5599; 2018), which was available before this Nature Methods paper went to press. The reference information has been updated in the PDF and HTML versions of the article.

15.
Nat Methods ; 15(11): 936-939, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377363

RESUMEN

Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) that are functionally brighter; detect submicromolar to millimolar amounts of glutamate; and have blue, cyan, green, or yellow emission profiles. These variants could be imaged in vivo in cases where original iGluSnFR was too dim, resolved glutamate transients in dendritic spines and axonal boutons, and allowed imaging at kilohertz rates.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Neuronas/citología , Retina/citología , Corteza Visual/citología , Animales , Color , Femenino , Hurones , Colorantes Fluorescentes , Ácido Glutámico/análisis , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Retina/metabolismo , Corteza Visual/metabolismo
16.
Nano Lett ; 20(6): 4073-4083, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396366

RESUMEN

How neuromodulatory transmitters diffuse into the extracellular space remains an unsolved fundamental biological question, despite wide acceptance of the volume transmission model. Here, we report development of a method combining genetically encoded fluorescent sensors with high-resolution imaging and analysis algorithms which permits the first direct visualization of neuromodulatory transmitter diffusion at various neuronal and non-neuronal cells. Our analysis reveals that acetylcholine and monoamines diffuse at individual release sites with a spread length constant of ∼0.75 µm. These transmitters employ varied numbers of release sites, and when spatially close-packed release sites coactivate they can spillover into larger subcellular areas. Our data indicate spatially restricted (i.e., nonvolume) neuromodulatory transmission to be a prominent intercellular communication mode, reshaping current thinking of control and precision of neuromodulation crucial for understanding behaviors and diseases.

17.
J Neurosci Res ; 97(8): 946-960, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31106909

RESUMEN

Glucose is an essential source of energy for the brain. Recently, the development of genetically encoded fluorescent biosensors has allowed real time visualization of glucose dynamics from individual neurons and astrocytes. A major difficulty for this approach, even for ratiometric sensors, is the lack of a practical method to convert such measurements into actual concentrations in ex vivo brain tissue or in vivo. Fluorescence lifetime imaging provides a strategy to overcome this. In a previous study, we reported the lifetime glucose sensor iGlucoSnFR-TS (then called SweetieTS) for monitoring changes in neuronal glucose levels in response to stimulation. This genetically encoded sensor was generated by combining the Thermus thermophilus glucose-binding protein with a circularly permuted variant of the monomeric fluorescent protein T-Sapphire. Here, we provide more details on iGlucoSnFR-TS design and characterization, as well as pH and temperature sensitivities. For accurate estimation of glucose concentrations, the sensor must be calibrated at the same temperature as the experiments. We find that when the extracellular glucose concentration is in the range 2-10 mM, the intracellular glucose concentration in hippocampal neurons from acute brain slices is ~20% of the nominal external glucose concentration (~0.4-2 mM). We also measured the cytosolic neuronal glucose concentration in vivo, finding a range of ~0.7-2.5 mM in cortical neurons from awake mice.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Espectrometría de Fluorescencia/métodos , Animales , Técnicas Biosensibles/instrumentación , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Thermus thermophilus/genética
18.
Nat Methods ; 10(2): 162-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314171

RESUMEN

We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.


Asunto(s)
Proteínas de Escherichia coli , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Recombinantes de Fusión , Transmisión Sináptica/fisiología , Animales , Astrocitos/metabolismo , Técnicas Biosensibles , Caenorhabditis elegans , Señalización del Calcio/fisiología , Proteínas de Escherichia coli/síntesis química , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/síntesis química , Hipocampo/metabolismo , Ratones , Corteza Motora/metabolismo , Neuronas/metabolismo , Estimulación Luminosa , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/síntesis química , Retina/fisiología , Relación Señal-Ruido , Pez Cebra
19.
J Bacteriol ; 196(23): 4140-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25225270

RESUMEN

Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Staphylococcus aureus/metabolismo , Perfilación de la Expresión Génica , Proteolisis
20.
J Neurosci ; 33(27): 10972-85, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23825403

RESUMEN

Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell's subunits are the presynaptic bipolar cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess iGluSnFR's dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural circuits.


Asunto(s)
Ácido Glutámico/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Estimulación Luminosa/métodos , Retina/citología , Retina/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA