Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 32(15): 5039-53, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496550

RESUMEN

Advances in mouse neural circuit genetics, brain atlases, and behavioral assays provide a powerful system for modeling the genetic basis of cognition and psychiatric disease. However, a critical limitation of this approach is how to achieve concordance of mouse neurobiology with the ultimate goal of understanding the human brain. Previously, the common marmoset has shown promise as a genetic model system toward the linking of mouse and human studies. However, the advent of marmoset transgenic approaches will require an understanding of developmental principles in marmoset compared to mouse. In this study, we used gene expression analysis in marmoset brain to pose a series of fundamental questions on cortical development and evolution for direct comparison to existing mouse brain atlas expression data. Most genes showed reliable conservation of expression between marmoset and mouse. However, certain markers had strikingly divergent expression patterns. The lateral geniculate nucleus and pulvinar in the thalamus showed diversification of genetic organization between marmoset and mouse, suggesting they share some similarity. In contrast, gene expression patterns in early visual cortical areas showed marmoset-specific expression. In prefrontal cortex, some markers labeled architectonic areas and layers distinct between mouse and marmoset. Core hippocampus was conserved, while afferent areas showed divergence. Together, these results indicate that existing cortical areas are genetically conserved between marmoset and mouse, while differences in areal parcellation, afferent diversification, and layer complexity are associated with specific genes. Collectively, we propose that gene expression patterns in marmoset brain reveal important clues to the principles underlying the molecular evolution of cortical and cognitive expansion.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/anatomía & histología , Expresión Génica/fisiología , Genómica/métodos , Animales , Química Encefálica/genética , Callithrix , Corteza Cerebral/metabolismo , Femenino , Marcadores Genéticos , Cuerpos Geniculados/metabolismo , Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Corteza Prefrontal/metabolismo , Pulvinar/metabolismo , Especificidad de la Especie , Núcleos Talámicos/anatomía & histología , Núcleos Talámicos/metabolismo , Corteza Visual/metabolismo
2.
Neuroscience ; 446: 145-156, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32866602

RESUMEN

The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.


Asunto(s)
Pulvinar , Corteza Visual , Animales , Mapeo Encefálico , Callithrix , Corteza Cerebral , Núcleos Talámicos , Vías Visuales
3.
Sci Rep ; 10(1): 21516, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33299078

RESUMEN

GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Regiones Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Animales , Animales Modificados Genéticamente/genética , Secuencia de Bases/genética , Encéfalo/metabolismo , Callithrix/genética , Callithrix/metabolismo , Movimiento Celular/genética , Corteza Cerebral/metabolismo , Expresión Génica/genética , Homocigoto , Humanos , Mutación/genética , Células-Madre Neurales/metabolismo , Polimicrogiria/genética , Polimicrogiria/metabolismo , Polimicrogiria/patología , Receptores Acoplados a Proteínas G/metabolismo , Eliminación de Secuencia/genética
4.
eNeuro ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736410

RESUMEN

Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5-16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Callithrix/fisiología , Potenciales Evocados Auditivos/fisiología , Neuroimagen Funcional/métodos , Imagen Óptica/métodos , Animales , Corteza Auditiva/diagnóstico por imagen , Femenino , Masculino
5.
Front Neuroanat ; 12: 89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425625

RESUMEN

Neural activity in the middle temporal (MT) area is modulated by the direction and speed of motion of visual stimuli. The area is buried in a sulcus in the macaque, but exposed to the cortical surface in the marmoset, making the marmoset an ideal animal model for studying MT function. To better understand the details of the roles of this area in cognition, underlying anatomical connections need to be clarified. Because most anatomical tracing studies in marmosets have used retrograde tracers, the axonal projections remain uncharacterized. In order to examine axonal projections from MT, we utilized adeno-associated viral (AAV) tracers, which work as anterograde tracers by expressing either green or red fluorescent protein in infected neurons. AAV tracers were injected into three sites in MT based on retinotopy maps obtained via in vivo optical intrinsic signal imaging. Brains were sectioned and divided into three series, one for fluorescent image scanning and two for myelin and Nissl substance staining to identify specific brain areas. Overall projection patterns were similar across the injections. MT projected to occipital visual areas V1, V2, V3 (VLP) and V4 (VLA) and surrounding areas in the temporal cortex including MTC (V4T), MST, FST, FSTv (PGa/IPa) and TE3. There were also projections to the dorsal visual pathway, V3A (DA), V6 (DM) and V6A, the intraparietal areas AIP, LIP, MIP, frontal A4ab and the prefrontal cortex, A8aV and A8C. There was a visuotopic relationship with occipital visual areas. In a marmoset in which two tracer injections were made, the projection targets did not overlap in A8aV and AIP, suggesting topographic projections from different parts of MT. Most of these areas are known to send projections back to MT, suggesting that they are reciprocally connected with it.

6.
J Neurosci Methods ; 286: 102-113, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28577985

RESUMEN

BACKGROUND: The brain of the common marmoset (Callithrix jacchus) is becoming a popular non-human primate model in neuroscience research. Because its brain fiber connectivity is still poorly understood, it is necessary to collect and present connection and trajectory data using tracers to establish a marmoset brain connectivity database. NEW METHOD: To visualize projections and trajectories of axons, brain section images were reconstructed in 3D by registering them to the corresponding block-face brain images taken during brain sectioning. During preprocessing, autofluorescence of the tissue was reduced by applying independent component analysis to a set of fluorescent images taken using different filters. RESULTS: The method was applied to a marmoset dataset after a tracer had been injected into an auditory belt area to fluorescently label axonal projections. Cortical and subcortical connections were clearly reconstructed in 3D. The registration error was estimated to be smaller than 200 µm. Evaluation tests on ICA-based autofluorescence reduction showed a significant improvement in signal and background separation. COMPARISON WITH EXISTING METHODS: Regarding the 3D reconstruction error, the present study shows an accuracy comparable to previous studies using MRI and block-face images. Compared to serial section two-photon tomography, an advantage of the proposed method is that it can be combined with standard histological techniques. The images of differently processed brain sections can be integrated into the original ex vivo brain shape. CONCLUSIONS: The proposed method allows creating 3D axonal projection maps overlaid with brain area annotations based on the histological staining results of the same animal.


Asunto(s)
Mapeo Encefálico , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Callithrix/anatomía & histología , Imagenología Tridimensional , Vías Nerviosas/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética
7.
Nat Neurosci ; 13(6): 767-75, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436479

RESUMEN

The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neurogénesis/genética , Animales , Atlas como Asunto , Diencéfalo/embriología , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipotálamo/embriología , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Neuroepiteliales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Reproducibilidad de los Resultados , Caracteres Sexuales , Especificidad de la Especie , Telencéfalo/embriología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA