Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hum Genet ; 68(9): 635-642, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37308566

RESUMEN

Otosclerosis (OTSC) is a focal and diffuse bone disorder of the human middle ear characterized by abnormal bone growth and deposition at the stapes' footplate. This hinders the transmission of acoustic waves to the inner ear leading to subsequent conductive hearing loss. The plausible convections for the disease are genetic and environmental factors with yet an unraveled root cause. Recently, exome sequencing of European individuals with OTSC revealed rare pathogenic variants in the Serpin Peptidase Inhibitor, Clade F (SERPINF1) gene. Here, we sought to investigate the causal variants of SERPINF1 in the Indian population. The gene and protein expression was also evaluated in otosclerotic stapes to ameliorate our understanding of the potential effect of this gene in OTSC. A total of 230 OTSC patients and 230 healthy controls were genotyped by single-strand conformational polymorphism and Sanger sequencing methods. By comparing the case controls, we identified five rare variants (c.72 C > T, c.151 G > A, c.242 C > G, c.823 A > T, and c.826 T > A) only in patients. Four variants c.390 T > C (p = 0.048), c.440-39 C > T (p = 0.007), c.643 + 9 G > A (p = 0.035), and c.643 + 82 T > C (p = 0.005) were found to be significantly associated with the disease. Down-regulation of SERPINF1 transcript level in otosclerotic stapes was quantified by qRT-PCR, ddPCR and further validated by in situ hybridization. Similarly, reduced protein expression was observed by immunohistochemistry and immunofluorescence in otosclerotic stapes that corroborate with immunoblotting of patients' plasma samples. Our findings identified that SERPINF1 variants are associated with the disease. Furthermore, reduced expression of SERPINF1 in otosclerotic stapes might contribute to OTSC pathophysiology.


Asunto(s)
Otosclerosis , Humanos , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/patología , Genotipo , Otosclerosis/genética , Otosclerosis/patología , Reacción en Cadena de la Polimerasa , Estribo/metabolismo , Estribo/patología
2.
J Neurogenet ; 37(4): 124-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38109176

RESUMEN

Autosomal recessive cerebellar ataxias (ARCA) constitute a highly heterogeneous group of progressive neurodegenerative disorders that typically occur prior to adulthood. Despite some clinical resemblance between these disorders, different genes are involved. We report in this study four Tunisian patients belonging to the same large consanguineous family, sharing autosomal recessive cerebellar ataxia phenotypes but with clinical, biological, electrophysiological, and radiological differences leading to the diagnosis of two distinct ARCA caused by two distinct gene defects. Two of our patients presented ataxia with the vitamin E deficiency (AVED) phenotype, and the other two presented ataxia with oculo-motor apraxia 2 (AOA2). Genetic testing confirmed the clinical diagnosis by the detection of a frameshift c.744delA pathogenic variant in the TTPA gene, which is the most frequent in Tunisia, and a new variant c.1075dupT in the SETX gene. In Tunisia, data suggest that genetic disorders are common. The combined effects of the founder effect and inbreeding, added to genetic drift, may increase the frequency of detrimental rare disorders. The genetic heterogeneity observed in this family highlights the difficulty of genetic counseling in an inbred population. The examination and genetic testing of all affected patients, not just the index patient, is essential to not miss a treatable ataxia such as AVED, as in the case of this family.


Asunto(s)
Ataxia Cerebelosa , Activador de Tejido Plasminógeno , Deficiencia de Vitamina E , Humanos , Ataxia/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/epidemiología , Consanguinidad , ADN Helicasas/genética , Heterogeneidad Genética , Enzimas Multifuncionales/genética , Mutación , ARN Helicasas/genética , Activador de Tejido Plasminógeno/genética
3.
Ann Hum Genet ; 86(4): 181-194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118659

RESUMEN

BACKGROUND: Intellectual disability is a form of neurodevelopmental disorders that begin in childhood and is characterized by substantial intellectual difficulties as well as difficulties in conceptual, social, and practical areas of living. Several genetic and nongenetic factors contribute to its development; however, its most severe forms are generally attributed to single-gene defects. High-throughput technologies and data sharing contributed to the diagnosis of hundreds of single-gene intellectual disability subtypes. METHOD: We applied exome sequencing to identify potential variants causing syndromic intellectual disability in six Sudanese patients from four unrelated families. Data sharing through the Varsome portal corroborated the diagnosis of one of these patients and a Tunisian patient investigated through exome sequencing. Sanger sequencing validated the identified variants and their segregation with the phenotypes in the five studied families. RESULT: We identified three pathogenic/likely pathogenic variants in CCDC82, ADAT3, and HUWE1 and variants of uncertain significance in HERC2 and ATP2B3. The patients with the CCDC82 variants had microcephaly and spasticity, two signs absent in the two previously reported families with CCDC82-related intellectual disability. CONCLUSION: In conclusion, we report new patients with pathogenic mutations in the genes CCDC82, ADAT3, and HUWE1. We also highlight the possibility of extending the CCDC82-linked phenotype to include spastic paraplegia and microcephaly.


Asunto(s)
Adenosina Desaminasa , Discapacidad Intelectual , Proteínas de Unión al ARN , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Adenosina Desaminasa/genética , Exoma , Humanos , Discapacidad Intelectual/diagnóstico , Microcefalia/genética , Mutación , Paraplejía/genética , Linaje , Fenotipo , Proteínas de Unión al ARN/genética , Sudán , Proteínas Supresoras de Tumor/genética , Túnez , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
4.
Hum Genet ; 141(3-4): 583-593, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34268600

RESUMEN

Hereditary hearing impairment (HI) is a heterogeneous condition with over 130 genes associated with genetic non-syndromic HI (NSHI) and Usher syndrome (USH). Approximately 80% of hereditary NSHI cases have autosomal recessive (AR) mode of inheritance. The high rate of consanguinity and endogamy in the Maghreb countries, including Tunisia, Algeria and Morocco, represents a major contributing factor to the development of ARHI. Since the 90s, those populations, with their particular large familiar structure, represented an effective key towards the discovery of the first HI loci and genes. In this study, we performed a deep literature database search to analyze the mutational spectrum and the distribution of pathogenic variants responsible of USH and the NSHI among those populations. To date, 124 pathogenic variants were identified in 32 genes of which over 70% represent population-specific variants. The particular variants' distribution is related to the high rate of consanguinity as well as the multiple shared features such as demographic history of migrations and social behavior that promoted the spreading of several founder mutations within those countries. This is the first study to report lessons from the past and current actualities of HI within the three Maghreb countries. However, despite the great impact placed by such population for the HI genetic studies, only a few next-generation sequencing platforms have so far been implemented with those countries. We, therefore, believe that those countries should be supported to implement this technology that would definitely be of great value in the discovery of additional novel HI genes/variants.


Asunto(s)
Síndromes de Usher , África del Norte , Consanguinidad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Linaje , Síndromes de Usher/genética
5.
Molecules ; 27(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565980

RESUMEN

Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.


Asunto(s)
Cupressus , Aceites Volátiles , Animales , Antibacterianos/farmacología , Cupressus/química , Conservantes de Alimentos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Aceites Volátiles/química , Aceites Volátiles/farmacología , Staphylococcus aureus , Pez Cebra
6.
Am J Med Genet A ; 185(4): 1081-1090, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33403770

RESUMEN

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Anomalías Múltiples/genética , Catarata/genética , Trastornos Congénitos de Glicosilación/genética , Proteínas de la Membrana/genética , Atrofia Muscular/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/ultraestructura , Anomalías Múltiples/patología , Adolescente , Catarata/complicaciones , Catarata/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/patología , Ojo/patología , Reconocimiento Facial , Facies , Femenino , Humanos , Proteínas de la Membrana/ultraestructura , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Mutación Missense/genética
7.
Dev Genes Evol ; 230(1): 37, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31989242

RESUMEN

In the originally published article, the first names and family names of the authors were interchanged, hence not correct. The correct presentation of names is presented above.

8.
Dev Genes Evol ; 230(1): 27-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838648

RESUMEN

Otospiralin (OTOSP) is a small protein of unknown function, expressed in fibrocytes of the inner ear and required for normal cochlear auditory function. Despite its conservation from fish to mammals, expression of otospiralin was only investigated in mammals. Here, we report for the first time the expression profile of OTOS orthologous genes in zebrafish (Danio rerio): otospiralin and si:ch73-23l24.1 (designated otospiralin-like). In situ hybridization analyses in zebrafish embryos showed a specific expression of otospiralin-like in notochord (from 14 to 48 hpf) and similar expression patterns for otospiralin and otospiralin-like in gut (from 72 to 120 hpf), swim bladder (from 96 to 120 hpf) and inner ear (at 120 hpf). Morpholino knockdown of otospiralin and otospiralin-like showed no strong change of the body structure of the embryos at 5 dpf and the inner ear was normally formed. Nevertheless, knockdown embryos showed a reduced number of kinocilia in the lateral crista, indicating that these genes play an important role in kinocilium formation. RT-qPCR revealed that otospiralin is highly expressed in adult zebrafish inner ear comparing to the others analyzed tissues as previously shown for mice. Interestingly, otospiralin-like was not detected in the inner ear which suggests that otospiralin have a more important function in hearing than otospiralin-like. Phylogenetic analysis of otospiralin proteins in vertebrates indicated the presence of two subgroups and supported the functional divergence observed in zebrafish for otospiralin and otospiralin-like genes. This study offers the first insight into the expression of otospiralin and otospiralin-like in zebrafish. Expression data point to an important role for otospiralin in zebrafish hearing and a specific role for otospiralin-like in notochord vacuolization.


Asunto(s)
Duplicación de Gen , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Morfolinos , Filogenia , Transcriptoma , Vertebrados/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
9.
Hum Mol Genet ; 27(5): 780-798, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293958

RESUMEN

The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.


Asunto(s)
Pérdida Auditiva/genética , Infertilidad Masculina/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Tirosina Fosfatasas/genética , Animales , Sistemas CRISPR-Cas , Femenino , Estudios de Asociación Genética , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Ratones Mutantes , Linaje , Monoéster Fosfórico Hidrolasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Testículo/fisiopatología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Am J Hum Genet ; 101(4): 630-637, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28965846

RESUMEN

Hearing loss and visual impairment in childhood have mostly genetic origins, some of them being related to sensorial neuronal defects. Here, we report on eight subjects from four independent families affected by auditory neuropathy and optic atrophy. Whole-exome sequencing revealed biallelic mutations in FDXR in affected subjects of each family. FDXR encodes the mitochondrial ferredoxin reductase, the sole human ferredoxin reductase implicated in the biosynthesis of iron-sulfur clusters (ISCs) and in heme formation. ISC proteins are involved in enzymatic catalysis, gene expression, and DNA replication and repair. We observed deregulated iron homeostasis in FDXR mutant fibroblasts and indirect evidence of mitochondrial iron overload. Functional complementation in a yeast strain in which ARH1, the human FDXR ortholog, was deleted established the pathogenicity of these mutations. These data highlight the wide clinical heterogeneity of mitochondrial disorders related to ISC synthesis.


Asunto(s)
Ferredoxina-NADP Reductasa/genética , Pérdida Auditiva Central/genética , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Enfermedades Mitocondriales/genética , Mutación , Atrofia Óptica/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Preescolar , Femenino , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , Prueba de Complementación Genética , Pérdida Auditiva Central/enzimología , Pérdida Auditiva Central/patología , Humanos , Proteínas Hierro-Azufre/genética , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Atrofia Óptica/enzimología , Atrofia Óptica/patología , Linaje , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Adulto Joven
11.
BMC Med Genet ; 21(1): 122, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493243

RESUMEN

BACKGROUND: Otosclerosis (OTSC) is among the most common causes of a late-onset hearing loss in adults and is characterized by an abnormal bone growth in the otic capsule. Alteration in the osteoprotegerin (OPG) expression has been suggested in the implication of OTSC pathogenesis. METHODS: A case-control association study of rs2228568, rs7844539, rs3102734 and rs2073618 single nucleotide polymorphisms (SNPs) in the OPG gene was performed in a Tunisian-North African population composed of 183 unrelated OTSC patients and 177 healthy subjects. In addition, a multilocus association and a meta-analysis of existing studies were conducted. RESULTS: Rs3102734 (p = 0.013) and rs2073618 (p = 0.007) were significantly associated with OTSC, which were predominantly detected in females after multiple corrections. Among the OPG studied SNPs, the haplotypes A-A-C-G (p = 0.0001) and A-A-C-C (p = 0.0004) were significantly associated with OTSC in females. Multilocus association revealed that the SNPs: rs2073618 in OPG, rs1800472 in TGFß1, rs39335, rs39350 and rs39374 in RELN, and rs494252 in chromosome 11 showed significant OTSC-associated alleles in Tunisian individuals. In addition, meta-analysis of the rs2073618 SNP in Tunisian, Indian and Italian populations revealed evidence of an association with OTSC (OR of 0.826, 95% CI [0.691-0.987], p = 0.035). CONCLUSIONS: Our findings suggest that rs3102734 and rs2073618 variants are associated with OTSC in North African ethnic Tunisian population. Meta-analysis of the rs2073618 in three different ethnic population groups indicated an association with OTSC.


Asunto(s)
Epistasis Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Osteoprotegerina/genética , Otosclerosis/genética , Polimorfismo de Nucleótido Simple , Alelos , Estudios de Casos y Controles , Mapeo Cromosómico , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Modelos Biológicos , Oportunidad Relativa , Otosclerosis/diagnóstico , Proteína Reelina
12.
Mol Biol Rep ; 46(2): 2139-2145, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30730013

RESUMEN

Hearing loss (HL) is a global sensory disorder that affects children and deprives them from their rights to enjoy standard social and educational levels. Although hundreds of genetic mutations across several genes have been linked to HL, very limited studies are available on Egyptian population which has high rate of consanguinity and HL. The frequency of the p.Gly12Valfs*2, p.Trp24* and p.Trp77Arg mutations in GJB2 along with the p.Arg81Gln variant in LRTOMT gene was investigated in Egyptian patients. 103 non-syndromic HL (NSHL) Egyptian patients and 100 control subjects were recruited in this study. PCR-RFLP and Direct sequencing were performed to screen and confirm presence/absence of those mutations in Egyptian population. The p.Gly12Valfs*2 mutation was found in eight patients (7.8%) (six homozygous and two heterozygous) with an allele frequency of 6.8%. The p.Trp24* and p.Trp77Arg were absent in both HL patients and controls. Another one patient had the heterozygous variant for p.Arg81Gln in LRTOMT gene. This study reports, for the first time, the presence of a heterozygous change for the p.Arg81Gln in LRTOMT gene in one Egyptian patient. The p.Gly12Valfs*2 mutation, but not the p.Trp24* nor the p.Trp77Arg, in GJB2 is the most frequent variant among Egyptian patients and would therefore be recommended for genetic counseling and diagnosis.


Asunto(s)
Conexinas/genética , Sordera/genética , Proteínas/genética , Alelos , Niño , Preescolar , Conexina 26 , Conexinas/metabolismo , Consanguinidad , Sordera/metabolismo , Egipto/epidemiología , Femenino , Frecuencia de los Genes/genética , Asesoramiento Genético , Variación Genética/genética , Pérdida Auditiva/genética , Humanos , Lactante , Masculino , Mutación , Proteínas/metabolismo
13.
Biomarkers ; 23(4): 347-356, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29325454

RESUMEN

CONTEXT: Presbycusis, an age-related hearing impairment (ARHI), represents the most common sensory disability in adults. Today, the molecular mechanisms underlying presbycusis remain unclear. This is in particular due to the fact that ARHI is a multifactorial complex disorder resulting from several genomic factors interacting with lifelong cumulative effects of: disease, diet, and environment. OBJECTIVE: Identification of novel biomarkers for presbycusis. MATERIALS AND METHODS: We selectively ascertained 18 elderly unrelated women lacking environmental and metabolic risk factors. Subsequently, we screened for methylation map changes in blood samples of women with presbycusis as compared to controls, using reduced representation bisulfite sequencing. We focused on hypermethylated cytosine bases located in gene promoters and the first two exons. To elucidate the related gene expression changes, we performed transcriptomic study using gene expression microarray. RESULTS: Twenty-seven genes, known to be expressed in adult human cochlea, were found in the blood cells to be differentially hypermethylated with significant (p < 0.01) methylation differences (>30%) and down-expressed with fold change >1.2 (FDR <0.05). Functional annotation and qRT-PCR further identified P2RX2, KCNQ5, ERBB3 and SOCS3 to be associated with the progression of ARHI. DISCUSSION AND CONCLUSION: Down-expressed genes associated with DNA hypermethylation could be used as biomarkers for understanding complex pathogenic mechanisms underlying presbycusis.


Asunto(s)
Metilación de ADN/fisiología , Presbiacusia/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Humanos , Canales de Potasio KCNQ/genética , Análisis por Micromatrices , Receptor ErbB-3/genética , Receptores Purinérgicos P2X2/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética
14.
Hum Mol Genet ; 24(9): 2482-91, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25601850

RESUMEN

Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.


Asunto(s)
Cilios/metabolismo , Genes Recesivos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Secuencia de Aminoácidos , Animales , Línea Celular , Mapeo Cromosómico , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Proteína Doblecortina , Femenino , Expresión Génica , Genes Reporteros , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Pez Cebra
15.
Hum Mutat ; 37(5): 481-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26841241

RESUMEN

Hereditary hearing loss (HL) is characterized by both allelic and locus genetic heterogeneity. Both recessive and dominant forms of HL may be caused by different mutations in the same deafness gene. In a family with post-lingual progressive non-syndromic deafness, whole-exome sequencing of genomic DNA from five hearing-impaired relatives revealed a single variant, p.Gly488Glu (rs145970949:G>A) in MYO3A, co-segregating with HL as an autosomal dominant trait. This amino acid change, predicted to be pathogenic, alters a highly conserved residue in the motor domain of MYO3A. The mutation severely alters the ATPase activity and motility of the protein in vitro, and the mutant protein fails to accumulate in the filopodia tips in COS7 cells. However, the mutant MYO3A was able to reach the tips of organotypic inner ear culture hair cell stereocilia, raising the possibility of a local effect on positioning of the mechanoelectrical transduction (MET) complex at the stereocilia tips. To address this hypothesis, we investigated the interaction of MYO3A with the cytosolic tail of the integral tip-link protein protocadherin 15 (PCDH15), a core component of MET complex. Interestingly, we uncovered a novel interaction between MYO3A and PCDH15 shedding new light on the function of myosin IIIA at stereocilia tips.


Asunto(s)
Cadherinas/metabolismo , Sordera/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Animales , Células COS , Proteínas Relacionadas con las Cadherinas , Células Cultivadas , Niño , Preescolar , Chlorocebus aethiops , Sordera/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linaje
16.
Hum Genet ; 135(5): 513-524, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27023905

RESUMEN

The high prevalence/incidence of hearing loss (HL) in humans makes it the most common sensory defect. The majority of the cases are of genetic origin. Non-syndromic hereditary HL is extremely heterogeneous. Genetic approaches have been instrumental in deciphering genes that are crucial for auditory function. In this study, we first used NADf chip to exclude the implication of known North-African mutations in HL in a large consanguineous Tunisian family (FT13) affected by autosomal recessive non-syndromic HL (ARNSHL). We then performed genome-wide linkage analysis and assigned the deafness gene locus to ch:5q23.2-31.1, corresponding to the DFNB60 ARNSHL locus. Moreover, we performed whole exome sequencing on FT13 patient DNA and uncovered amino acid substitution p.Cys113Tyr in SLC22A4, a transporter of organic cations, cosegregating with HL in FT13 and therefore the cause of ARNSHL DFNB60. We also screened a cohort of small Tunisian HL families and uncovered an additional deaf proband of consanguineous parents that is homozygous for p.Cys113Tyr carried by the same microsatellite marker haplotype as in FT13, indicating that this mutation is ancestral. Using immunofluorescence, we found that Slc22a4 is expressed in stria vascularis (SV) endothelial cells of rodent cochlea and targets their apical plasma membrane. We also found Slc22a4 transcripts in our RNA-seq library from purified primary culture of mouse SV endothelial cells. Interestingly, p.Cys113Tyr mutation affects the trafficking of the transporter and severely alters ergothioneine uptake. We conclude that SLC22A4 is an organic cation transporter of the SV endothelium that is essential for hearing, and its mutation causes DFNB60 form of HL.


Asunto(s)
Cóclea/patología , Consanguinidad , Endotelio/patología , Genes Recesivos/genética , Pérdida Auditiva/genética , Mutación/genética , Proteínas de Transporte de Catión Orgánico/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cóclea/metabolismo , Endotelio/metabolismo , Exoma/genética , Femenino , Células HEK293 , Pérdida Auditiva/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido , Simportadores
17.
Hum Genet ; 135(8): 953-61, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27344577

RESUMEN

Hearing loss is the most common sensory deficit in humans with causative variants in over 140 genes. With few exceptions, however, the population-specific distribution for many of the identified variants/genes is unclear. Until recently, the extensive genetic and clinical heterogeneity of deafness precluded comprehensive genetic analysis. Here, using a custom capture panel (MiamiOtoGenes), we undertook a targeted sequencing of 180 genes in a multi-ethnic cohort of 342 GJB2 mutation-negative deaf probands from South Africa, Nigeria, Tunisia, Turkey, Iran, India, Guatemala, and the United States (South Florida). We detected causative DNA variants in 25 % of multiplex and 7 % of simplex families. The detection rate varied between 0 and 57 % based on ethnicity, with Guatemala and Iran at the lower and higher end of the spectrum, respectively. We detected causative variants within 27 genes without predominant recurring pathogenic variants. The most commonly implicated genes include MYO15A, SLC26A4, USH2A, MYO7A, MYO6, and TRIOBP. Overall, our study highlights the importance of family history and generation of databases for multiple ethnically discrete populations to improve our ability to detect and accurately interpret genetic variants for pathogenicity.


Asunto(s)
Sordera/genética , Genética de Población , Síndromes de Usher/genética , Sordera/epidemiología , Etnicidad/genética , Femenino , Pruebas Genéticas , Humanos , Masculino , Mutación , Síndromes de Usher/epidemiología
18.
Mol Vis ; 22: 827-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27440999

RESUMEN

PURPOSE: Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively. METHODS: In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing of three known USH1 genes: MYO7A, PCDH15, and USH1C. RESULTS: Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in MYO7A. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of mutations, among which three were novel. These novel mutations will be included in the NADf mutation screening chip that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient molecular diagnosis of USH in a patient's early childhood is of utmost importance, allowing better educational and therapeutic management.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cadherinas/genética , Codón sin Sentido , Mutación del Sistema de Lectura , Miosinas/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Adolescente , Adulto , Proteínas Relacionadas con las Cadherinas , Proteínas de Ciclo Celular , Consanguinidad , Proteínas del Citoesqueleto , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Miosina VIIa , Linaje , Análisis de Secuencia de ADN , Túnez , Adulto Joven
19.
Mol Genet Genomics ; 290(4): 1327-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25633957

RESUMEN

Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous.The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher-Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X-Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype-phenotype correlation for the associated phenotypes and clinical follow-up.


Asunto(s)
Colágeno Tipo XI/genética , Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva Sensorineural/genética , Mutación Missense , Secuencia de Aminoácidos , Secuencia de Bases , Colágeno Tipo XI/química , Consanguinidad , Exoma/genética , Salud de la Familia , Femenino , Frecuencia de los Genes , Genotipo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido
20.
Electrophoresis ; 36(23): 2908-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26331800

RESUMEN

Y chromosome STRs (Y-STRs) are being used frequently in forensic laboratories. Previous studies of Y-STR polymorphisms in different groups of the Tunisian population identified low levels of diversity and discrimination capacity (DC) using various commercial marker sets. This definitely limits the use of such systems for Y-STRs genotyping in Tunisia. In our investigation on South Tunisia, 200 unrelated males were typed for the 12 conventional Y-STRs included in the PowerPlex® Y System. Additional set of nine noncore Y-STRs including DYS446, DYS456, DYS458, DYS388, DYS444, DYS445, DYS449, DYS710, and DYS464 markers were genotyped and evaluated for their potential in improving DC. Allele frequency, gene diversity, haplotype diversity (HD), and DC calculation revealed that DYS464 was the most diverse marker followed by DYS710 and DYS449 markers. The standard panel of 12 Y-STRs (DC = 80.5%) and the nine markers were combined to obtain DC of 99%. Among the 198 different haplotypes observed, 196 haplotypes were unique (HD = 99.999). Out of the nine noncore set, six Y-STRs (DYS458, DYS456, DYS449, DYS710, DYS444, and DYS464) had the greatest impact on enhancing DC. Our data provided putative Y-STRs combination to be used for genetic and forensic applications.


Asunto(s)
Cromosomas Humanos Y , Variación Genética , Haplotipos/genética , Frecuencia de los Genes , Genética de Población , Humanos , Masculino , Repeticiones de Microsatélite , Polimorfismo Genético , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA