Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Photochem Photobiol Sci ; 23(6): 1143-1153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748080

RESUMEN

Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.

2.
Photochem Photobiol Sci ; 22(3): 513-524, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36308632

RESUMEN

The effect of Riboflavin-5'-phosphate (RFPO4) sensitization on photocatalytic properties of TiO2 film was studied. RFPO4 was adsorbed on film surface to investigate the photophysical properties of TiO2 upon blue-light photoexcitation. The film was characterized through scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and diffuse reflectance spectroscopy. The efficiency of the TiO2/RFPO4 film was tested for pollutant elimination in aqueous media in a visible-light-driven system. The phenol paradigmatic model was employed in an aqueous solution as a contaminant target. TiO2/RFPO4 sensitized photodegradation of phenol, which produces catechol, hydroquinone, and benzophenone, was monitored by absorption spectroscopy and HPLC. The results indicated that phenol degradation with TiO2/RFPO4 film was due to the photogeneration of two reactive oxygen species, singlet molecular oxygen (O2(1Δg)) and superoxide radical anion (O2·-) identified through specific detection techniques. The presence of O2(1Δg) is reported here for the first time as generated from a sensitized TiO2 film upon visible-light photoirradiation. Based on the photophysical determinations, a photocatalytic mechanism for TiO2/RFPO4 was established.

3.
Photochem Photobiol Sci ; 22(12): 2827-2837, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839053

RESUMEN

Flavin mononucleotide (FMN) is a dye belonging to the flavin family. These dyes produce photosensitized degradation of organic compounds via reaction with the excited states of the dye or with reactive oxygen species photogenerated from the triplet of the dye. This article presents a new polymeric dye (FMN-CS) composed of the photosensitizer FMN covalently bonded to chitosan polysaccharide (CS). FMN-CS obtained has a molecular weight of 230 × 103 g mol-1 and a deacetylation degree of 74.8%. The polymeric dye is an environmentally friendly polymer with spectroscopic and physicochemical properties similar to those of FMN and CS, respectively. Moreover, under sunlight, it is capable of generating 1O2 with a quantum yield of 0.31. FMN-CS, like CS, is insoluble in basic media. This allows easy recovery of the polymeric dye once the photosensitized process has been carried out and makes FMN-CS a suitable photosensitizer for the degradation of pollutants in contaminated waters. To evaluate whether FMN-CS may be used for pollutant degradation, the photosensitized degradation of two trihydroxybenzenes by FMN-CS was studied.


Asunto(s)
Quitosano , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Mononucleótido de Flavina/química , Flavinas/química , Especies Reactivas de Oxígeno
4.
ACS Omega ; 8(33): 30705-30715, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636947

RESUMEN

The application of photocatalysis for organic synthesis, both in the laboratory and on an industrial scale, will depend on the achieving of good yields and the ease with which it can be applied. Selective irradiation of the photocatalyst with LED light has made it possible to activate the reactions easily, without the need for UV or heat filters. However, a common problem is the need to separate the photocatalyst from the reaction products through extraction and chromatography isolation processes. These procedures make it difficult to recover and reuse the catalyst, which is not compatible with scale-up applications. Photocatalysts attached to heterogeneous supports resulted in an alternative, which facilitates their removal and reuse. In this study, we use chromatographic silica gel as a low-cost heterogeneous support to bind photosensitizers such as Riboflavin or Eosin Y. The modified silica gel was analyzed by FTIR-ATR and diffuse reflectance UV-visible spectroscopy, thermogravimetric analysis, and optical microscopy. These hybrid materials have a suitable size for easy separation by decantation and were found to be photoactive against two photooxidation reactions. These easy-to-handle materials open the door to effective applications for photoinduced organic synthesis methods at medium to large scale.

5.
Photochem Photobiol Sci ; 11(6): 938-45, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22231514

RESUMEN

We report on the photostability of a mixture of vitamins B6 and B2 (riboflavin, Rf) upon visible light irradiation and on the possible role of the vitamin B6 family (B6D) as deactivators of reactive oxygen species (ROS). The work is a systematic kinetic and mechanistic study under conditions in which only Rf absorbs photoirradiation. Pyridoxine, pyridoxal hydrochloride, pyridoxal phosphate and pyridoxamine dihydrochloride were studied as representative members of the vitamin B6 family. The visible light irradiation of dissolved Rf and B6D in pH 7.4 aqueous medium under aerobic conditions induces photoprocesses that mainly produce B6D degradation. The overall oxidative mechanism involves the participation of ROS. Photogenerated (3)Rf* is quenched either by oxygen, giving rise to O(2)((1)Δ(g)) by electronic energy transfer to dissolved ground state oxygen, or by B6D yielding, through an electron transfer process, the neutral radical RfH˙, and O(2)˙(-) in an subsequent step. B6D act as quenchers of O(2)((1)Δ(g)) and O(2)˙(-), the former in a totally reactive event that also inhibits Rf photoconsumption. The common chromophoric moiety of B6D represented by 3-hydroxypyridine, constitutes an excellent model that mimics the kinetic behavior of the vitamin as an antioxidant towards Rf-generated ROS. The protein lysozyme, taken as an O(2)((1)Δ(g))-mediated oxidizable biological target, is photoprotected by B6D from Rf-sensitized photodegradation through the quenching of electronically excited triplet state of the pigment, in a process that competes with O(2)((1)Δ(g)) generation.


Asunto(s)
Antioxidantes/química , Especies Reactivas de Oxígeno/química , Riboflavina/química , Vitamina B 6/química , Antioxidantes/metabolismo , Antioxidantes/efectos de la radiación , Concentración de Iones de Hidrógeno , Cinética , Luz , Muramidasa/metabolismo , Oxidación-Reducción , Fotólisis , Especies Reactivas de Oxígeno/metabolismo , Riboflavina/metabolismo , Riboflavina/efectos de la radiación , Vitamina B 6/metabolismo , Vitamina B 6/efectos de la radiación
6.
Phys Chem Chem Phys ; 12(40): 13238-42, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20820477

RESUMEN

The thermal cis-to-trans isomerisation process has been studied for a series of para-, ortho- and polyhydroxy-substituted azobenzenes in different solvents. The kinetics of the thermal back reaction for the p-hydroxy-substituted azobenzenes depend strongly on the nature of the solvent used, with relaxation times ranging from 200-300 milliseconds in ethanol to half an hour in toluene. Otherwise, the process rate is mainly independent of the solvent nature for the ortho substituted analogues. Polyhydroxy-substituted azobenzenes show very much faster kinetics than the para- and ortho- monohydroxyazoderivatives. With relaxation times of 6-12 milliseconds in ethanol, they are optimal molecules for designing fast optical switching devices. All the hydroxyazoderivatives thermally isomerise from the metastable cis form to the thermodynamically stable trans isomer through a rotational mechanism.

7.
Photochem Photobiol ; 85(5): 1082-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19500295

RESUMEN

New fluorinated biarsenical derivatives with improved optical properties based on highly photostable analogs of fluorescein were recently introduced. The photophysical parameters of the triplet excited states as well as photosensitized oxidation reactions of these dyes were determined in order to investigate the influence of molecular structure on the exceptional photostability of these fluorophores. The lack of correspondence between triplet quantum yields and lifetimes with the photobleaching rates of some of the fluorophores of the series suggests that differential reactivities of the excited states with ground state oxygen accounts for the different photodegradation resistances. The UV-visible absorption and emission spectra of the fluorinated fluoresceins and their biarsenical derivatives were evaluated using a TD-DFT/BP86/6-31G** approach, taking bulk solvent effects into account by means of the polarizable continuum model. The calculated properties are in good agreement with experimental data. The S0-->S1 vertical excitation energies in the gas phase and in water were obtained with the optimized geometries of the excited states. This type of calculation could be used in the rational design of new dyes.

8.
Photochem Photobiol ; 95(3): 901-908, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30403296

RESUMEN

The proherbicide Isoxaflutole (IXF) hydrolyzes spontaneously to diketonitrile (DKN) a phytotoxic compound with herbicidal activity. In this work, the sensitized degradation of IXF using Riboflavin (Rf), a typical environmentally friendly sensitizer, Fenton and photo-Fenton processes has been studied. The results indicate that only the photo-Fenton process produces a significant degradation of the IXF. Photolysis experiments of IXF sensitized by Riboflavin is not a meaningful process, IXF quenches the Rf excited triplet (3 Rf*) state with a quenching rate constant of 1.5 · 107  m-1  s-1 and no reaction is observed with the species O2 (1 Δg ) or O 2 · - generated from 3 Rf*. The Fenton reaction produces no changes in the IXF concentration. While the photo-Fenton process of the IXF, under typical conditions, it produces a degradation of 99% and a mineralization to CO2 and H2 O of 88%. A rate constant value of 1.0 × 109  m-1  s-1 was determined for the reaction between IXF and HO˙. The photo-Fenton process degradation products were identified by UHPLC-MS/MS analysis.


Asunto(s)
Herbicidas/química , Isoxazoles/química , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Riboflavina/química , Cinética , Luz
9.
Photochem Photobiol ; 84(5): 1201-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18346086

RESUMEN

Kinetics and mechanism of the photo-oxidation of the natural catecholamine-type neurotransmitter dopamine (DA) has been studied in aqueous solution, under aerobic conditions, in the presence of riboflavin (Rf, vitamin B(2)) as a photosensitizer. Results indicate the formation of a weak dark complex Rf-DA, with a mean apparent association constant K(ass) = 30 m(-1), only detectable at DA concentrations much higher than those employed in photochemical experiments. An intricate mechanism of competitive reactions operates upon photoirradiation. DA quenches excited singlet and triplet states of Rf, with rate constants of 4.2 x 10(9) and 2.2 x 10(9) m(-1) s(-1), respectively. With the catecholamine in a concentration similar to that of dissolved molecular oxygen in air-saturated water, DA and oxygen competitively quench the triplet excited state of Rf, generating superoxide radical anion (O(2)) and singlet molecular oxygen (O(2)((1)Delta(g))) by processes initiated by electron and energy-transfer mechanisms, respectively. Rate constants values of 1.9 x 10(8) and 6.6 x 10(6) m(-1) s(-1) have been obtained for the overall and reactive (chemical) interaction of DA with O(2)((1)Delta(g)). The presence of superoxide dismutase increases both the observed rates of aerobic DA photo-oxidation and oxygen uptake, due to its known catalytic scavenging of O(2), a species that could revert the overall photo-oxidation effect, according to the proposed reaction mechanism. As in most of the catecholamine oxidative processes described in the literature, aminochrome is the DA oxidation product upon visible light irradiation in the presence of Rf. It is generated with a quantum yield of 0.05.


Asunto(s)
Dopamina/química , Dopamina/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Riboflavina/farmacología , Indolquinonas/síntesis química , Indolquinonas/química , Indolquinonas/efectos de la radiación , Cinética , Luz , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Oxígeno/química , Oxígeno/efectos de la radiación , Fotoquímica , Fotólisis , Fármacos Fotosensibilizantes/química , Teoría Cuántica , Riboflavina/química , Superóxidos/química , Superóxidos/efectos de la radiación , Factores de Tiempo
10.
Chemosphere ; 73(4): 564-71, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18649916

RESUMEN

The aerobic riboflavin (Rf)-sensitized photodegradation of the endocrine disruptor 4,4'-isopropylidenebisphenol (bisphenol A, BPA), and of the related compounds 4,4'-isopropylidenebis(2,6-dibromophenol) and 4,4'-isopropylidenebis(2,6-dimethylphenol) has been studied in water and water-methanol mixtures through visible-light continuous photolysis, polarographic detection of oxygen uptake, stationary and time-resolved fluorescence spectroscopy, time-resolved near-IR phosphorescence detection and laser flash photolysis techniques. Bisphenols (BPs) quench excited singlet and triplet states of Rf, with rate constants close to the diffusion limit. BPs and dissolved molecular oxygen, employed in similar concentrations, competitively quench triplet excited Rf. As a consequence, superoxide radical anion and singlet molecular oxygen (O2(1Deltag)) are produced by electron- and energy-transfer processes, respectively, as demonstrated by auxiliary experiments employing selective quenchers of both oxidative species and the exclusive O2(1Deltag) generator Rose Bengal. As a global result, the photodegradation of Rf is retarded, whereas BPs are degraded, mainly by an O2(1Deltag)-mediated mechanism, which constitutes a relatively efficient process in the case of BPA. Oxidation, dimerization and fragmentation products have been identified in the photooxidation of BPA. Results indicate that BPs in natural waters can undergo spontaneous photodegradation under environmental conditions in the presence of adequate photosensitizers.


Asunto(s)
Fenoles/química , Fotólisis , Riboflavina/química , Compuestos de Bencidrilo , Cinética
11.
Photochem Photobiol ; 83(3): 520-5, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16986998

RESUMEN

The dye-sensitized photodegradation of uracil (UR), the parent compound of several profusely employed herbicides, has been studied as a model of their environmental fate. In order to mimic conditions frequently found in nature, aqueous solutions of UR have been irradiated with visible light in the presence of the natural sensitizer riboflavin (Rf). The results indicate that UR is photostable in acid media, but is quickly degraded in pH 7 or pH 9 solutions, where singlet molecular oxygen [O2(1Delta(g))] and, to a lesser extent, superoxide radical anion (O2*-)-both species photogenerated from triplet excited Rf, 3Rf*-participate in the photodegradation. At pH 7, UR is slowly degraded through an O2*- -mediated mechanism, whereas Rf disappears through its reaction with O2(1Delta(g)) and, in the form of 3Rf*, with UR. On the contrary, at pH 9 Rf is photoprotected through two processes: its regeneration from the formed Rf radical species-a back electron transfer that also produces O2*- -and the elimination from the medium of O2(1Delta(g)) by its reaction with UR. The overall result of the preservation of ground state Rf is the continuity of the photosensitized process and, hence, of the UR degradation. Media with higher pH values could not be employed due to the fast photodegradation of Rf. With rose bengal (RB) as photosensitizer, the rate constants found for the overall interaction between UR and the photogenerated O2(1Delta(g)) were in the range 5 x 10(5) M(-1) s(-1) (at pH 7) to 1.3 x 10(8) M(-1) s(-1) (in 1 M NaOH aqueous solution, mainly physical quenching). The maximum O2(1Delta(g)0-mediated photooxidation efficiencies with RB were reached at pH 11, where only the O2(1Delta(g)0-reactive quenching with UR was observed.


Asunto(s)
Herbicidas/efectos de la radiación , Uracilo/efectos de la radiación , Restauración y Remediación Ambiental/métodos , Cinética , Fotólisis , Agua , Contaminantes del Agua/efectos de la radiación
12.
Chemosphere ; 65(2): 237-44, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16643984

RESUMEN

The present work studies the visible-light-promoted photodegradation of the colorless fungicide carbendazim (methyl 2-benzimidazolecarbamate) and several 2-substituted benzimidazoles (SBZ's), in water or water-methanol solution, in the presence of air and, as a photosensitizer, the synthetic xanthene dye Rose Bengal (RB) or the natural pigment riboflavin (Rf). The results indicate that the degradation of each particular SBZ depends on its chemical structure and on the sensitizer employed. In the presence of RB, the degradation always operates via a singlet molecular oxygen (O(2)((1)Delta(g)))-mediated mechanism, through a highly efficient process, as deduced from the comparison of the rate constants for physical and chemical quenching of O(2)((1)Delta(g)). In the presence of Rf, the visible-light irradiation of any of the studied SBZ's produces a series of competitive processes that depend on the relative concentrations of Rf and SBZ. These processes include the quenching of excited singlet and triplet Rf states by the SBZ and the generation of both O(2)((1)Delta(g)) and superoxide radical anion (O(2)(-)), the latter generated by electron transfer from excited Rf species to the dissolved oxygen. The overall result is the photodegradation of the SBZ and the photoprotection of the sensitizer.


Asunto(s)
Colorantes/química , Fungicidas Industriales/metabolismo , Fotólisis , Fármacos Fotosensibilizantes/metabolismo , Aire , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Carbamatos/metabolismo , Carbamatos/farmacología , Fungicidas Industriales/farmacología , Metanol/química , Oxígeno/química , Fotoquímica , Fármacos Fotosensibilizantes/farmacología , Riboflavina/química , Rosa Bengala/química , Espectrofotometría , Superóxidos/química , Agua/química , Xantenos/química
13.
J Photochem Photobiol B ; 80(2): 130-8, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15916900

RESUMEN

Kinetics and mechanism of the aerobic Riboflavin (Rf, vitamin B2) sensitized photodegradation of Phenylephrine (Phen), a phenolamine belonging to the sympathomimetic drugs family, has been studied in water, employing continuous photolysis, polarographic detection of oxygen uptake, steady-state and time-resolved fluorescence spectroscopy, time-resolved IR-phosphorescence and laser flash photolysis. Results indicate the formation of a weak dark complex Rf-Phen, with an apparent association constant of 5.5+/-0.5M(-1), only detectable at Phen concentrations much higher than those employed in the photochemical experiments. Under irradiation, an intricate mechanism of competitive reactions operates. Phen quenches excited singlet and triplet states of Rf, with rate constants of 3.33+/-0.08 and 1.60+/-0.03x10(9)M(-1)s(-1), respectively. With the sympathomimetic drug in a concentration similar to that of dissolved molecular oxygen in water, Phen and oxygen competitively quench triplet excited Rf, generating superoxide radical anion and singlet molecular oxygen (O2((1)Deltag)) by processes initiated by electron- and energy-transfer mechanisms respectively. As a global result, the photodegradation of the vitamin, a known process taking place from its excited triplet state, is retarded, whereas the phenolamine, practically unreactive towards these oxidative species, behaves as a highly efficient physical deactivator of O2((1)Deltag). The phenolamine structure in Phen appears as an excellent scavenger of activated oxygen species, comparatively superior, in kinetic terms, to some commercial phenolic antioxidants.


Asunto(s)
Fenilefrina/farmacología , Fotoquímica , Especies Reactivas de Oxígeno , Simpatomiméticos/farmacología , Cinética , Rayos Láser , Estrés Oxidativo , Triptófano/efectos de los fármacos
14.
Redox Rep ; 20(6): 259-66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25897629

RESUMEN

OBJECTIVES: The multifunctional drug niclosamide (NSD), extensively employed therapeutically, is a frequent pollutant of surface waters. Considering the environmental importance of photodegradative processes for this type of contaminant, the kinetic and mechanistic aspects of the possible visible-light-mediated photooxidation of NSD were studied under naturalistic conditions. METHODS: The visible-light absorber riboflavin (vitamin B2) was employed as a photosensitizer. The vitamin can usually be found in natural waters and is the most common endogenous photosensitizer in mammals. The interaction of NSD with electronically excited states of Rf and with photogenerated reactive oxygen species (ROS) was evaluated through conventional UV spectroscopy, laser flash photolysis, time-resolved phosphorescence detection of singlet molecular oxygen (O2((1)Δg)), and polarographic dosage of dissolved oxygen. RESULTS: Ground state NSD quenched the long-lived triplet excited state of Rf ((3)Rf*) and the photogenerated ROS (O2((1)Δg)) and superoxide radical anion (O2•−). As a result, NSD was photooxidized. The rate constants for the interaction NSD-O2((1)Δg) are particularly low, in the order of 10(6)/M/s, although the whole interaction is attributable to a pure reactive process. The O2((1)Δg) quenching was faster in alkaline medium, favored by the ionization of the NSD phenolic group. Under Rf-photosensitization, NSD was degraded very much more rapidly than phenol, the latter being considered a paradigmatic water-contaminant model compound. NSD may behave as an antioxidant in bio-environments, as demonstrated employing the photooxidizable amino acid tryptophan as a relevant biological target. DISCUSSION: The results indicate that a O2•−-mediated process is the main route for the Rf-sensitized photooxidation of NSD. Photodegradation of the biocide in the presence and absence of phenol and tryptophan was quantitatively evaluated, discussed, and interpreted in terms of competitive quenching processes of (3)Rf*, O2((1)Δg), and O2•− by the substrates.


Asunto(s)
Niclosamida/uso terapéutico , Procesos Fotoquímicos , Riboflavina/química , Aniones , Antioxidantes/química , Cinética , Rayos Láser , Luz , Metanol/química , Oxígeno/química , Fenol/química , Fenoles/química , Fotólisis , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/química , Oxígeno Singlete , Espectrofotometría Ultravioleta , Superóxidos/química , Triptófano/química , Agua/química , Contaminantes Químicos del Agua/química
15.
J Photochem Photobiol B ; 153: 233-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453988

RESUMEN

The profusely employed drugs Piroxicam (Piro), Tenoxicam (Teno) and Meloxicam (Melo) belonging to the non-steroidal antiinflammatory drug (NSAID) family of the Oxicams (Oxis) were studied in the frame of two specific conditions: (a) their ROS scavenging ability, in relation to a possible biological antioxidant action and (b) their photodegradability under environmental conditions, in the context of Oxi-contaminated waters. Singlet molecular oxygen (O2((1)Δg)) and superoxide radical anion (O2(-)) were photogenerated through Riboflavin (Rf, vitamin B2)-photosensitization in aqueous and aqueous-methanolic solutions in the presence of Oxi concentrations in the range 50-500 µM. The visible-light absorber vitamin is currently present in all types of natural waters and constitutes the most frequent endogenous photosensitizer in mammals. Hence, it was employed in order to mimic both natural sceneries of interest. All three Oxis quench O2((1)Δg) with rate constants in the order of 10(8)M(-1)s(-1) showing a significant photodegradation efficiency given by a dominant reactive fashion for deactivation of the oxidative species. Although this is not a desirable property in the context of photoprotection upon prolonged photoirradiation, constitutes in fact a promissory aspect for the degradation NSAIDs, in waste waters. Indirect evidence indicates that Melo is also oxidized through a O2(-)-mediated component. The simultaneous presence of Piro plus tryptophan or tyrosine under Rf-photosensitizing conditions, which has taken the amino acids as photooxidizable model residues in a proteinaceous environment, indicates that the NSAID induces a protection of the biomolecules against photodynamic degradation.


Asunto(s)
Depuradores de Radicales Libres/química , Piroxicam/análogos & derivados , Piroxicam/química , Especies Reactivas de Oxígeno/química , Tiazinas/química , Tiazoles/química , Antiinflamatorios no Esteroideos/química , Luz , Meloxicam , Oxidación-Reducción , Fotólisis/efectos de la radiación , Piridinas/química , Rodaminas/química , Riboflavina/química , Oxígeno Singlete/química , Superóxidos/química , Triptófano/química , Tirosina/química , Contaminantes Químicos del Agua/química
16.
Photochem Photobiol ; 79(5): 428-33, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15191051

RESUMEN

The sensitized photooxidation promoted by daylight-absorbing compounds appears as a plausible course to produce the photodegradation of catecholamines. We report the kinetics and mechanism of vitamin B2 (riboflavin [Rf])-sensitized photooxidation of isoproterenol (Iso), a synthetic sympathomimetic drug structurally related to epinephrine, using water as a solvent. A weak dark complex Rf-Iso is formed, only detectable at relatively high Iso concentrations (>10 mM), with a mean value of 13 +/- 3 M(-1) for the apparent association constant. Under aerobic sensitizing conditions (Rf approximately 0.02 mM and Iso approximately 0.5 mM) two oxidative mechanisms operate, mediated by singlet molecular oxygen (O2(1delta g)) and superoxide radical anion (O2*-). Our analysis shows that the main reaction pathway is an electron transfer-mediated quenching of Rf excited triplet state (3Rf*) by Iso. It produces the species Iso*+ and Rf*-. The latter, in a subsequent reaction path, generates O2*-, which is mainly responsible for Iso photooxygenation. In a less-important process, energy transfer of the 3Rf* to dissolved oxygen generates O2(1delta g). The kinetic balance between chemical and physical quenching of O2(1delta g) by Iso indicates that the process is largely dominated by the physical, not chemical, interaction. The results, which can be extrapolated to an in vivo condition, show the susceptibility of Iso to undergo visible light-induced photodegradation in the presence of dye sensitizers present in the environment.


Asunto(s)
Isoproterenol/química , Oxígeno/química , Fármacos Fotosensibilizantes/química , Riboflavina/química , Oscuridad , Cinética , Rayos Láser , Luz , Estructura Molecular , Oxidación-Reducción , Fotoquímica , Fotólisis , Agua/química
17.
J Colloid Interface Sci ; 255(1): 189-94, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12702384

RESUMEN

Time-resolved laser-induced fluorescence (TRLIF) has been used to study the interaction of uranyl ion with sodium dodecyl sulfate (SDS) micelles in H(3)PO(4) 1 M. The titration curve consists of two curved regions with different slopes, one of them more pronounced at low concentration of SDS and the other, with a less pronounced positive slope at larger [SDS] until a plateau is reached. The fluorescence quenching of uranyl ion by para-substituted phenol compounds was studied by TRLIF and steady-state emission intensity measurements. The results were interpreted in terms of binding of phenolic compounds to the micelle. The binding constant (K(Q)) as well as the entrance and exit rate constants were determined for all the quenchers used.


Asunto(s)
Dodecil Sulfato de Sodio/química , Compuestos de Uranio/química , Micelas , Fenoles
18.
J Photochem Photobiol B ; 135: 48-54, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24796645

RESUMEN

Kinetic and mechanistic aspects of the photochemical and microbiological degradation of the herbicide Maleic Hydrazide (MH) have been studied. Riboflavin (Rf, vitamin B2) was employed as a main photosensitizer whereas Humic Acid (HA) was included as a second sensitizer in order to more closely simulate natural environmental conditions. MH quenches excited singlet and triplet states of Rf, with rate constants close to the diffusion limit. The herbicide and dissolved molecular oxygen competitively quench triplet excited Rf. As a consequence the reactive oxygen species (ROS), superoxide radical anion (O2(-·)), hydrogen peroxide (H2O2) and singlet molecular oxygen (O2((1)Δg)) are produced by electron- and energy-transfer processes, respectively, as demonstrated by auxiliary experiments employing selective auxiliary quenchers and the exclusive O2((1)Δg) generator Rose Bengal (RB). As a global result, the photodegradation of Rf is retarded, whereas MH is degraded by the generated ROS. The bacteria Pseudomonas aeruginosa (Ps) and Bacillus subtilis (Bs), recognized as contaminants surface-water and soil and microbial antagonists of phytopathogenic, were used in the microbiological experiments. Results of the individual incubation of both bacteria in in the presence of MH indicate a stimulation on the Ps growth, implying the biodegradation of the herbicide, whereas MH only exerted a bacteriostatic effect on Bs.


Asunto(s)
Bacillus subtilis/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Hidrazida Maleica/química , Fotólisis , Pseudomonas aeruginosa/metabolismo , Biodegradación Ambiental , Electrones , Contaminantes Ambientales/química , Contaminantes Ambientales/aislamiento & purificación , Contaminantes Ambientales/metabolismo , Herbicidas/aislamiento & purificación , Sustancias Húmicas , Cinética , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/química , Riboflavina/química
19.
Int J Food Microbiol ; 185: 51-6, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24929683

RESUMEN

The objectives of the present study were to determine the in vitro efficacy of chitosan (0.5, 1.0, 2.0 and 3.0mg/mL) under different water availabilities (0.995, 0.99, 0.98, 0.96 and 0.93) at 25°C on lag phase, growth rate and fumonisin production by isolates of Fusarium verticillioides and Fusarium proliferatum. The presence of chitosan affected growth and fumonisin production, and this effect was dependent on the dose and aW treatment used. The presence of chitosan increased the lag phase, and reduced the growth rate of both Fusarium species significantly at all concentrations used, especially at 0.93 aW. Also, significant reduction of fumonisin production was observed in both Fusarium species at all conditions assayed. The present study has shown the combined effects of chitosan and aW on growth and fumonisin production by the two most important Fusarium species present on maize. Low molecular weight (Mw) chitosan with more than 70% of degree of deacetylation (DD) at 0.5mg/mL was able to significantly reduce growth rate and fumonisin production on maize-based media, with maximum levels of reduction in both parameters obtained at the highest doses used. As fumonisins are unavoidable contaminants in food and feed chains, their presence needs to be reduced to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize. In this scenario post-harvest use of chitosan could be an important alternative treatment.


Asunto(s)
Quitosano/farmacología , Fumonisinas/metabolismo , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Agua/farmacología , Zea mays/microbiología , Animales , Fumonisinas/análisis , Fusarium/crecimiento & desarrollo , Humanos
20.
Photochem Photobiol ; 90(6): 1251-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25244633

RESUMEN

The known O2((1)∆g)-sensitizer system Chitosan bounded Rose Bengal (CH-RB), with Rose Bengal (RB) immobilized by irreversible covalent bonding to the polymer Chitosan (CH), soluble in aquous acidic medium, was employed in the photodegradation of three tri-hydroxy benzene water-contaminants (THBs). The system sensitizes the O2((1)∆g)-mediated photodegradation of THBs by a process kinetically favored, as compared to that employing free RB dissolved in the same solvent. Additionally the free xanthene dye, degradable by O2((1)∆g) through self-sensitization upon prolonged light-exposure, is considerably protected when bonded to CH-polymer. The polymeric sensitizer, totally insoluble in neutral medium, can be removed from the solution after the photodegradative cycle by precipitation through a simple pH change. This fact constitutes an interesting aspect in the context of photoremediation of confined polluted waters. In other words, the sensitizing system could be useful for avoiding to dissolve dyestuffs in the polluted waters, in order to act as conventional sunlight-absorbing dye-sensitizers. In parallel the interaction CH-O2((1)∆g) in acidic solution was evaluated. The polymer quenches the oxidative species with a rate constant 2.4 × 10(8) M(-1) s(-1) being the process mostly attributable to a physical interaction. This fact promotes the photoprotection of the bonded dye in the CH-RB polymer.


Asunto(s)
Quitosano/química , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Polímeros/química , Contaminantes Químicos del Agua/química , Hidroxilación , Oxidación-Reducción , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA