Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hypertension ; 81(3): 636-647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38174566

RESUMEN

BACKGROUND: Hypertension is one of the main risk factors for dementia and cognitive impairment. METHODS: We used the model of transverse aortic constriction to induce chronic pressure overload in mice. We characterized brain injury by advanced translational applications of magnetic resonance imaging. In parallel, we analyzed peripheral target organ damage induced by chronic pressure overload by ultrasonography. Microscopical characterization of brain vasculature was performed as well, together with the analysis of immune and inflammatory markers. RESULTS: We identified a specific structural, microstructural, and functional brain injury. In particular, we highlighted a regional enlargement of the hypothalamus, microstructural damage in the white matter of the fimbria, and a reduction of the cerebral blood flow. A parallel analysis performed by confocal microscopy revealed a correspondent tissue damage evidenced by a reduction of cerebral capillary density, paired with loss of pericyte coverage. We assessed cognitive impairment and cardiac damage induced by hypertension to perform correlation analyses with the brain injury severity. At the mechanistic level, we found that CD8+T cells, producing interferon-γ, infiltrated the brain of hypertensive mice. By neutralizing this proinflammatory cytokine, we obtained a rescue of the phenotype, demonstrating their crucial role in establishing the microvascular damage. CONCLUSIONS: Overall, we have used translational tools to comprehensively characterize brain injury in a mouse model of hypertension induced by chronic pressure overload. We have identified early cerebrovascular damage in hypertensive mice, sustained by CD8+IFN-γ+T lymphocytes, which fuel neuroinflammation to establish the injury of brain capillaries.


Asunto(s)
Lesiones Encefálicas , Hipertensión , Ratones , Animales , Enfermedades Neuroinflamatorias , Encéfalo/patología , Imagen por Resonancia Magnética , Lesiones Encefálicas/patología
2.
Cell Rep ; 33(11): 108494, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326772

RESUMEN

Angiotensin II (AngII) is a peptide hormone that affects the cardiovascular system, not only through typical effects on the vasculature, kidneys, and heart, but also through less understood roles mediated by the brain and the immune system. Here, we address the hard-wired neural connections within the autonomic nervous system that modulate splenic immunity. Chronic AngII infusion triggers burst firing of the vagus nerve celiac efferent, an effect correlated with noradrenergic activation in the spleen and T cell egress. Bioelectronic stimulation of the celiac vagus nerve, in the absence of other challenges and independently from afferent signals to the brain, evokes the noradrenergic splenic pathway to promote release of a growth factor mediating neuroimmune crosstalk, placental growth factor (PlGF), and egress of CD8 effector T cells. Our findings also indicate that the neuroimmune interface mediated by PlGF and necessary for transducing the neural signal into an effective immune response is dependent on α-adrenergic receptor signaling.


Asunto(s)
Angiotensina II/metabolismo , Linfocitos T CD8-positivos/metabolismo , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Animales , Humanos , Ratones
3.
Cardiovasc Res ; 114(3): 456-467, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324984

RESUMEN

AIMS: Chronic increase of mineralocorticoids obtained by administration of deoxycorticosterone acetate (DOCA) results in salt-dependent hypertension in animals. Despite the lack of a generalized sympathoexcitation, DOCA-salt hypertension has been also associated to overdrive of peripheral nervous system in organs typically targeted by blood pressure (BP), as kidneys and vasculature. Aim of this study was to explore whether DOCA-salt recruits immune system by overactivating sympathetic nervous system in lymphoid organs and whether this is relevant for hypertension. METHODS AND RESULTS: To evaluate the role of the neurosplenic sympathetic drive in DOCA-salt hypertension, we challenged splenectomized mice or mice with left coeliac ganglionectomy with DOCA-salt, observing that they were both unable to increase BP. Then, we evaluated by immunofluorescence and ELISA levels of the placental growth factor (PlGF) upon DOCA-salt challenge, which significantly increased the growth factor expression, but only in the presence of an intact neurosplenic sympathetic drive. When PlGF KO mice were subjected to DOCA-salt, they were significantly protected from the increased BP observed in WT mice under same experimental conditions. In addition, absence of PlGF hampered DOCA-salt mediated T cells co-stimulation and their consequent deployment towards kidneys where they infiltrated tissue and provoked end-organ damage. CONCLUSION: Overall, our study demonstrates that DOCA-salt requires an intact sympathetic drive to the spleen for priming of immunity and consequent BP increase. The coupling of nervous system and immune cells activation in the splenic marginal zone is established through a sympathetic-mediated PlGF release, suggesting that this pathway could be a valid therapeutic target for hypertension.


Asunto(s)
Presión Sanguínea , Acetato de Desoxicorticosterona , Ganglios Simpáticos/fisiopatología , Hipertensión/metabolismo , Activación de Linfocitos , Neuroinmunomodulación , Factor de Crecimiento Placentario/metabolismo , Bazo/inervación , Bazo/metabolismo , Linfocitos T/metabolismo , Animales , Modelos Animales de Enfermedad , Ganglios Simpáticos/cirugía , Ganglionectomía , Hipertensión/inducido químicamente , Hipertensión/inmunología , Hipertensión/fisiopatología , Riñón/inmunología , Riñón/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Crecimiento Placentario/deficiencia , Factor de Crecimiento Placentario/genética , Bazo/inmunología , Esplenectomía , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA