Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Invest New Drugs ; 39(3): 724-735, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33409897

RESUMEN

Aurora kinase A, a mitotic kinase that is overexpressed in various cancers, is a promising cancer drug target. Here, we performed preclinical characterization of TAS-119, a novel, orally active, and highly selective inhibitor of Aurora A. TAS-119 showed strong inhibitory effect against Aurora A, with an IC50 value of 1.04 nmol/L. The compound was highly selective for Aurora A compared with 301 other protein kinases, including Aurora kinase B. TAS-119 induced the inhibition of Aurora A and accumulation of mitotic cells in vitro and in vivo. It suppressed the growth of various cancer cell lines harboring MYC family amplification and CTNNB1 mutation in vitro. In a xenograft model of human lung cancer cells harboring MYC amplification and CTNNB1 mutation, TAS-119 showed a strong antitumor activity at well-tolerated doses. TAS-119 induced N-Myc degradation and inhibited downstream transcriptional targets in MYCN-amplified neuroblastoma cell lines. It also demonstrated inhibitory effect against tropomyosin receptor kinase (TRK)A, TRKB, and TRKC, with an IC50 value of 1.46, 1.53, and 1.47 nmol/L, respectively. TAS-119 inhibited TRK-fusion protein activity and exhibited robust growth inhibition of tumor cells via a deregulated TRK pathway in vitro and in vivo. Our study indicates the potential of TAS-119 as an anticancer drug, especially for patients harboring MYC amplification, CTNNB1 mutation, and NTRK fusion.


Asunto(s)
Antineoplásicos , Aurora Quinasa A , Neoplasias Pulmonares , Piperidinas , Inhibidores de Proteínas Quinasas , Receptor trkA , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Masculino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , beta Catenina/genética , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carga Tumoral/efectos de los fármacos , Piperidinas/farmacología , Piperidinas/uso terapéutico
2.
Mol Cancer Ther ; 19(10): 1981-1991, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788206

RESUMEN

TAS-119 is a novel orally active, selective inhibitor of Aurora kinase A identified as a clinical candidate for efficacy testing in combination with taxanes. In vitro, TAS-119 enhanced cell growth inhibition of paclitaxel in multiple human cancer cell lines derived from various tissues, including paclitaxel-resistant cell lines. Interestingly, TAS-119 did not enhance paclitaxel antitumor activity in normal lung diploid fibroblast cell lines WI-38 and MRC5. In vivo, TAS-119 enhanced the antitumor efficacy of paclitaxel and docetaxel in multiple models at doses inhibitory to Aurora A in tumors. Moreover, the drug combination was well tolerated, and TAS-119 did not exaggerate clinically documented side effects of taxanes, neutropenia and neurotoxicity, in rats. The same TAS-119 concentration enhanced the cell growth inhibitory activity of three clinically approved taxanes, paclitaxel, docetaxel, and cabazitaxel. The degree of enhancement calculated as fold of change of the IC50 value for each taxane was almost the same among the three taxanes. We conducted in vitro and in vivo experiments to develop an optimized combination therapy regimen for TAS-119 with paclitaxel/docetaxel. Using in vitro and in vivo models, we tested the drug administration order for TAS-119 combined with paclitaxel and the TAS-119 treatment duration. The best regimen in preclinical models was combining paclitaxel or docetaxel treatment with 4 days of TAS-119 dosing, which was initiated on the same day as the paclitaxel or docetaxel administration or one day later. This information provided guidance for the design of a clinical trial of TAS-119 and paclitaxel or docetaxel combination.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Hidrocarburos Aromáticos con Puentes/metabolismo , Taxoides/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Células HeLa , Humanos , Ratones , Ratones Desnudos , Ratas
3.
Tumour Biol ; 30(1): 1-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19142034

RESUMEN

TAC-101, 4-[3,5-bis(trimethylsilyl)benzamido] benzoic acid, is a synthetic ligand for retinoic acid receptor (RAR)-alpha. Here, we demonstrate the contribution of TAC-101-induced AP-1 interference to stabilization of tumor growth. TAC-101 induced transcriptional activation of RAR, resulting in marked elevation of RARbeta, a representative retinoid response marker, and it also significantly repressed the transcriptional activity of AP-1 in JHH-7 cells. In contrast to JHH-7, JHH-6 is another RARalpha-expressing human hepatocellular carcinoma (HCC) cell line with constitutive activation of AP-1, but it is retinoid insensitive and did not respond to the TAC-101-induced RAR signal. TAC-101 did not inhibit AP-1 activity of the JHH-6 cell line, showing that AP-1 interference by TAC-101 must be in parallel with RAR activation. Interleukin-8 (IL-8), one of the AP-1-regulated factors which correlate with a poor prognosis in HCC patients, was found to be overexpressed in JHH-7 cells. TAC-101 reduced IL-8 production without cytotoxicity and inhibited the progression of HCC in the orthotopic mouse model with decreased tumor IL-8 level. These results suggest that downregulation of the extracellular biomarker for AP-1 interference via the induction of retinoid signals will enhance the pharmacological effect of TAC-101 on HCC and it could be useful as a surrogate biomarker of therapeutic efficacy.


Asunto(s)
Benzoatos/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Transcripción AP-1/metabolismo , Compuestos de Trimetilsililo/farmacología , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Humanos , Interleucina-8/metabolismo , Ligandos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Factor de Transcripción AP-1/efectos de los fármacos , Factor de Transcripción AP-1/genética
4.
Genes Dev ; 22(1): 37-49, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18172164

RESUMEN

Transcriptional initiation is a key step in the control of mRNA synthesis and is intimately related to chromatin structure and histone modification. Here, we show that the ubiquitylation of H2A (ubH2A) correlates with silent chromatin and regulates transcriptional initiation. The levels of ubH2A vary during hepatocyte regeneration, and based on microarray expression data from regenerating liver, we identified USP21, a ubiquitin-specific protease that catalyzes the hydrolysis of ubH2A. When chromatin is assembled in vitro, ubH2A, but not H2A, specifically represses the di- and trimethylation of H3K4. USP21 relieves this ubH2A-specific repression. In addition, in vitro transcription analysis revealed that ubH2A represses transcriptional initiation, but not transcriptional elongation, by inhibiting H3K4 methylation. Notably, ubH2A-mediated repression was not observed when H3 Lys 4 was changed to arginine. Furthermore, overexpression of USP21 in the liver up-regulates a gene that is normally down-regulated during hepatocyte regeneration. Our studies revealed a novel mode of trans-histone cross-talk, in which H2A ubiquitylation controls the di- and trimethylation of H3K4, resulting in regulation of transcriptional initiation.


Asunto(s)
Histonas/metabolismo , Activación Transcripcional , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Animales , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Histona Desacetilasas/metabolismo , Histonas/química , Lisina/metabolismo , Metilación , Ratones , Modelos Biológicos , Modelos Genéticos , Sitio de Iniciación de la Transcripción
5.
Cancer Sci ; 96(9): 614-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16128747

RESUMEN

The Cdc25 dual-specificity phosphatases are key regulators of cell cycle progression through activation of cyclin-dependent kinases (Cdk). Three homologs exist in humans: Cdc25A, Cdc25B, and Cdc25C. Cdc25A and Cdc25B have oncogenic properties and are overexpressed in some types of tumors. Compounds that inhibit Cdc25 dual-specificity phosphatase activity might thus be potent anticancer agents. We screened several hundred compounds in a library using an in vitro phosphatase assay, with colorimetric measurement of the conversion of p-nitrophenyl phosphate (pNPP) to p-nitrophenol by the catalytic domain of recombinant human Cdc25, and discovered TPY-835, which inhibits Cdc25A and Cdc25B activity (IC50 = 5.1 and 5.7 microM, respectively). TPY-835 had mixed inhibition kinetics for Cdc25A and Cdc25B. TPY-835 caused cell cycle arrest in the G1 phase in human lung cancer cells (A549 and SBC-5) but not cell cycle arrest in the G2/M phase. After treatment with TPY-835, the activation of Cdk2 was suppressed and phosphorylation of the retinoblastoma (Rb) protein was decreased in SBC-5 cells. In addition, TPY-835 induced an increase of the sub-G1 phase cell population after 48-72 h treatment. The growth inhibitory effects of TPY-835 against cisplatin (CDDP)-, camptothecin- and 5-FU-resistant cell lines are comparable to the growth inhibitory effect on their parental lines, thus indicating that TPY-835 did not show cross-resistance to these cell lines. These results suggest that TPY-835 is a promising candidate for constructing a novel class of antitumor agents that can control the cell cycle progression of cancer cells.


Asunto(s)
Fase G1/efectos de los fármacos , Fase G1/fisiología , Neoplasias Pulmonares/patología , Pirazoles/farmacología , Fosfatasas cdc25/antagonistas & inhibidores , Fosfatasas cdc25/metabolismo , Proteínas de Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Resistencia a Antineoplásicos , Humanos , Cinética , Fosforilación , Proteína de Retinoblastoma/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA