Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 75: 127111, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36435150

RESUMEN

BACKGROUND: A copper chaperone CCS is a multi-domain protein that supplies a copper ion to Cu/Zn-superoxide dismutase (SOD1). Among the domains of CCS, the N-terminal domain (CCSdI) belongs to a heavy metal-associated (HMA) domain, in which a Cys-x-x-Cys (CxxC) motif binds a heavy metal ion. It has hence been expected that the HMA domain in CCS has a role in the metal trafficking; however, the CxxC motif in the domain is dispensable for supplying a copper ion to SOD1, leaving an open question on roles of CCSdI in CCS. METHODS: To evaluate protein-protein interactions of CCS through CCSdI, yeast two-hybrid assay, a pull-down assay using recombinant proteins, and the analysis with fluorescence resonance energy transfer were performed. RESULTS: We found that CCS specifically interacted with another copper chaperone HAH1, a HMA domain protein, through CCSdI. The interaction between CCSdI and HAH1 was not involved in the copper supply from CCS to SOD1 but was mediated by a zinc ion ligated with Cys residues of the CxxC motifs in CCSdI and HAH1. CONCLUSION: While physiological significance of the interaction between copper chaperones awaits further investigation, we propose that CCSdI would have a role in the metal-mediated interaction with other proteins including heterologous copper chaperones.


Asunto(s)
Cobre , Zinc
2.
G3 (Bethesda) ; 12(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35944207

RESUMEN

Hermansky-Pudlak syndrome is an autosomal recessive disease characterized by albinism, visual impairment, and blood platelet dysfunction. One of the genes responsible for Hermansky-Pudlak syndrome, hps1, regulates organelle biogenesis and thus plays important roles in melanin production, blood clotting, and the other organelle-related functions in humans and mice. However, the function of hps1 in other species remains poorly understood. In this study, we discovered albino medaka fish during the maintenance of a wild-derived population and identified hps1 as the responsible gene using positional cloning. In addition to the specific absence of melanophore pigmentation, the hps1 mutant showed reduced blood coagulation, suggesting that hps1 is involved in clotting caused by both mammalian platelets and fish thrombocytes. Together, the findings of our study demonstrate that hps1 has an evolutionarily conserved role in melanin production and blood coagulation. In addition, our study presents a useful vertebrate model for understanding the molecular mechanisms of Hermansky-Pudlak syndrome.


Asunto(s)
Síndrome de Hermanski-Pudlak , Oryzias , Albinismo , Animales , Coagulación Sanguínea/genética , Trastornos Hemorrágicos , Síndrome de Hermanski-Pudlak/genética , Humanos , Mamíferos , Melaninas/genética , Proteínas de la Membrana/genética , Ratones , Mutación , Oryzias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA